
Fair Scheduling for Deadline-Driven,
Resource-Constrained, Multi-Analytics Workloads

Stratos Dimopoulos, Chandra Krintz, Rich Wolski

Department of Computer Science
University of California, Santa Barbara
{stratos,ckrintz,rich}@cs.ucsb.edu

Abstract—In this paper, we analyze and empirically evaluate
Justice, a fair-share, deadline-aware job scheduler for resource-
constrained cloud deployments managed by big data resource
negotiators. Justice provides admission control, which leverages
historical traces and job deadlines to guide and adapt resource
allocation decisions to changing cloud conditions. We evaluate
Justice using different deadline types and production workloads.
We find that it outperforms extant allocators in terms of fair
allocation, deadline satisfaction, and useful work.

Keywords—cloud for IoT; scheduling; big-data; fairness;

I. INTRODUCTION

Increasingly, cloud users deploy big data frameworks (e.g.,
Apache Hadoop and Spark) via resource negotiators such
as Apache Mesos and YARN. Resource negotiators simplify
deployment and enable multiple frameworks to execute concur-
rently using the same set of resources. They employ fair-share
resource allocators [6, 8], which attempt to partition resources
equally across frameworks.

In this paper, we investigate fair-share allocation for work-
loads with deadline and resource constraints. Deadline-driven
workloads represent an important class of big data applica-
tions [12, 15, 20], which are unfortunately under supported
in multi-analytic settings. Resource-limited deployments are
those in which more resources (e.g., CPU, memory) cannot
simply be added on-demand, in exchange for an additional
charge, as they can in a public cloud. Such deployments
include private clouds, IoT edge systems, and cloudlets in
which data analytics is performed near where data is collected
to provide low-latency (deadline-driven) actuation, control,
data privacy, decision support, and to reduce bandwidth re-
quirements [19]. Because modern resource negotiators and
big data frameworks were not designed for this combination
of constraints, their use can result in low utilization, poor
performance, missed deadlines, and unfair sharing [3].

To address these limitations, we design and implement
admission control for resource negotiators that satisfies dead-
lines while preserving fairness in resource-constrained envi-
ronments. Our system, called Justice, is framework agnostic,
so it can be part of existing open-source resource negotiators
like Mesos, YARN, and Kubernetes and its focus on efficient
resource usage makes it ideal for environments with limited
resources. Justice uses historical job analysis and deadline in-
formation to assign the minimal fraction of resources required
to meet a job’s deadline. Justice estimates this fraction from a

running tabulation of an expansion factor that it computes from
an on-line, post-mortem analysis of all previous jobs executed.

We compare Justice to the baseline “fair” allocator em-
ployed by open-source systems like Mesos and YARN, to an
extension of this allocator, and to an “oracle”, an allocator that
cannot exist in practice, as it knows the exact minimum number
of resources required for each job to meet its deadline (i.e.,
the “oracle” has access to information that real allocators can
obtain only after jobs complete their executions). The metrics
we use to do this comparison are two different shades of
fairness, deadline satisfaction, productivity, wasted time and
utilization. We use discrete-event, trace-driven simulation and
deadline formulations from related work [7, 16, 20].

Our results show that Justice performs significantly better
than the Mesos and YARN allocators and similarly to the ora-
cle in terms of fairness, deadline satisfaction, and effective use
of resources. This is because these resource negotiators attempt
to preserve fairness without considering resource demand,
which impedes performance when resources are constrained.
We also find that Justice achieves greater productivity, wastes
fewer resources, and has significantly better system utilization
than its counter-parts for the workloads, deployment sizes, and
deadlines that we consider.

The contributions of this paper are: a detailed analysis of
job tracking, resource allocation, and admission control algo-
rithms of Justice; an extended empirical evaluation of Justice
against “fair-share” algorithms under different deadline types
and cluster conditions on a YARN production trace that is 10x
bigger in the number of submitted jobs and two times larger in
terms of CPU cores, compared to the trace-based simulation
performed in [4]; the introduction of a new fairness metric
to distinguish “true fairness” from the traditional perception
of fairness (“equality”). We define this metric using Jain’s
fairness index [11] and compare the results of Justice and its
competitive algorithms on our evaluation section.

II. BACKGROUND AND RELATED WORK

In resource-constrained deployments encountered in the
private cloud or the IoT, the fair-share policies [6, 8] fail
to preserve fairness [3, 13]. Also, current fair allocators are
deadline-agnostic. The kind of fairness they try to preserve is
based on the resources requested by the job submitters and
they ignore the actual demand of the job in order to meet its
deadline. Moreover, to satisfy deadlines cluster administrators
have to add extra resources, violate fairness by manually prior-
itizing one group of users over another, use solutions similar to



Algorithm 1 Justice TRACK JOB Algorithm
1: function TRACK JOB(requestedTasks, deadline, compT ime,

numCPUsAllocd, success)
2: deadlineCPUs = compT ime/deadline
3: maxCPUs = min(requestedTasks, cluster capacity)
4: minReqRate = deadlineCPUs/maxCPUs
5: minReqRateList.add(minReqRate)
6: MinCPUFrac = min(minReqRateList)
7: MaxCPUFrac = max(minReqRateList)
8: LastCPUFrac = numCPUsAllocd/maxCPUs
9: LastSuccess = success

10: fractionErrorList.append(minReqRate− LastCPUFrac)
11: end function

a capacity scheduler [1], or require users to reserve resources
in advance [2, 17]. Such solutions are costly, inefficient, or
impractical for resource constrained clusters as they further
limit peak cluster capacity.

Moreover, in these multi-analytic settings, the intra-job al-
locators of frameworks like Hadoop and Spark greedily occupy
resources even if they are not using them [3, 9, 22]. Authors
in [9] attempt to address this issue by exploiting task-level
resource requirements information and DAG dependencies. In
contrast, Justice does not require job-repetitions and task-level
information. Similarly to PYTHIA [5], Justice utilizes admis-
sion control to avoid wasting resources on infeasible jobs.
But in addition, it monitors cluster conditions and adapts to
changes in traffic patterns to avoid over-provisioning resources.
This way it minimizes the amount of wasted resources and
achieves‘true fair-sharing” while it still satisfies more deadlines
compared to fair-share approaches.

Much work [7, 18, 24] focuses on building performance
profiles and scalability models offline or exploits historic and
runtime information [10, 14, 20, 23, 24]. These approaches
are not suitable for resource constrained, multi-analytics set-
tings. Sampling, simulations, and extensive monitoring, impose
overheads and additional cost. Also, trace analysis [4, 7]
shows that some workloads have small ratio of repeated jobs
with large execution time dispersion. Therefore, approaches
based solely on past executions cannot predict with high
statistical confidence for ad-hoc jobs or jobs that are not
frequently repeated. Lastly, most of these approaches require
task-level information, for the specific framework they target
(e.g., Hadoop [10, 14, 23, 24] or Spark [21]) and consequently
cannot be integrated into resource managers.

III. JUSTICE ALGORITHM ANALYSIS

Justice can be conceptually separated into two main oper-
ations that it performs in parallel. The job tracking operation
as described in Algorithm 1 and the admission control and
resource allocation operation as described in Algorithm 2.
Admission control and resource allocation depends on the
online statistical model the tracking operation builds to esti-
mate the resources jobs need to satisfy their deadlines (Func-
tion alloc_resources in Algorithm 2) and to correct these
estimations based on the Kalman filter mechanism described
in Algorithm 3. The allocation operation depends on the
quality of the statistical model for more accurate assignment of
resources, but the two operations are decoupled so the allocator
can still operate before there are sufficient historical statistics.

Algorithm 2 Admission Control and Resource Allocation
1: function ADMISSION CONTROL(RequesterJob)
2: for all j ∈ SubmittedJobs do
3: Feasible = True, TTD = Deadline− ElapsedT ime
4: reqCpus = ESTIMATE REQ(j, TTD)
5: if reqCpus > min(taskCount, capacity) then
6: Feasible = False
7: end if
8: if Share(j) < reqCpus then
9: if Feasible == True then

10: priority = reqCpus/TTD,ADD2HEAP(priority,j)
11: else
12: DROP JOB(j)
13: end if
14: end if
15: end for
16: allocations = ALLOC RESOURCES(heap)
17: if RequesterJob 6∈ allocations then
18: Add RequesterJob to queue
19: end if
20: end function

21: function ESTIMATE REQ(Job)
22: maxCpus = min(tasks, capacity), reqCpus = maxCpus
23: if CompletedJobs > 1 then
24: fraction = CALCULATE ALLOC FRACTION()
25: fraction = CORRECT ALLOC FRACTION(fraction)
26: fraction = (deadline/(deadline− queue)) ∗ fraction
27: reqCpus = max(ceil(fraction ∗maxCpus), 1)
28: end if
29: return reqCpus
30: end function

31: function ALLOC RESOURCES(heap)
32: offers = CREATE OFFERS(heap)
33: allocations = SEND OFFERS(offers)
34: return allocations
35: end function

36: function CREATE OFFERS(heap)
37: while availableCpus > 0 and heap not empty do
38: for all Job j ∈ heap do
39: offer = min(request(j), availableCpus)
40: if offer < request(j) then
41: offer = 0
42: else
43: availableCpus− = offer
44: offersDict[j] = offer
45: end if
46: end for
47: end while
48: return offersDict
49: end function

Algorithm 3 Allocation Calculation and Correction
1: function CALCULATE ALLOC FRACTION
2: if LastSuccess then
3: CPUFraq = MinCPUFrac
4: else
5: CPUFraq = MaxCPUFrac
6: end if
7: fraction = (LastCPUFrac+ CPUFraq)/2
8: return fraction
9: end function

10: function CORRECT ALLOC FRACTION(fraction)
11: correction =CALC SMOOTHED AVG(fractionErrorList))
12: correctedFraction = fraction+ correction
13: correctedFraction =VALIDATE FRACTION(correctedFraction)
14: return correctedFraction
15: end function



This design allows Justice to perform these operations
without delaying job scheduling as it can run on the back-
ground to calculate the new allocation fractions similarly to
other window-based fairness algorithms. Its memory require-
ments scale linearly to the points used on the desired history
window and, depending on the desired scheduling latency and
estimation accuracy requirements, a limited amount of metrics
could be stored in memory and the rest in database.

A. Job Metrics Tracking

Justice invokes Algorithm 1 every time a job completes
its execution. The algorithm takes as inputs a number of
metrics provided by the user at submission time and a number
of metrics extracted by the job’s execution profile that is
available in system logs after the job completes. In return,
the algorithm produces a number of metrics that are used
as inputs to the functions of Algorithm 2 and Algorithm 3.
The inputs of the algorithm are the number of tasks a job
has (requestedTasks), its deadline as defined in sec-
onds by the job submitter, the total computation time of the
job (compTime) expressed in CPU*Seconds, the number
of CPUs allocated to the job (numCPUsAllocd), and a
boolean success indicating whether the job was successful
(completed its job before its deadline) or failed (exceeded its
deadline or got dropped before completing).

Based on these five inputs, the algorithm derives a num-
ber of intermediate metrics for all jobs in order to produce
its final results. These metrics are, the minimum number
of CPUs a job would have needed to finish by its dead-
line (deadlineCPUs), the maximum parallelism of the
job (maxCPUS), the minimum required rate (minReqRate)
which is the fraction of resources the job would have needed
compared to its maximum resources, in order to meet its
deadline just in time. These rates are stored for all jobs
encountered in the system (minReqRateList).

After producing these derived metrics, the algorithm cal-
culates the desired results. These are MinCPUFrac and
MaxCPUFrac, which correspond to the minimum and max-
imum request rates encountered across all jobs respectively
and the LastCPUFrac, which is the last given rate ob-
served for the job that completed and triggered the algo-
rithm. It also stores whether the last job completed successful
LastSuccess. Lastly, a historic fraction error is produced
across all jobs fractionErrorList as the difference be-
tween the minimum required rate the job would have needed to
meet its deadline and the fraction of resources Justice assigned
to it. Note that deadlineCPUs cannot be greater than
maxCPU (assuming feasible deadlines) and MinCPUFrac and
MaxCPUFrac are always less or equal to 1.

B. Resource Estimation, Admission Control and Allocation

After a bootstrapping period in which the job tracking
operation runs without any admission control in order to
gather enough data and produce estimations with statistical
significance, the admission control and resource allocation
mechanism of Justice’s kick in. Algorithm 2 takes as input a
submitted job (RequesterJob), and based on the metrics
that the job tracking operation continuously produces and
stores, as discussed on the previous section, it creates an

allocation for the job. This allocation should be sufficient
to meet its deadline just in time or if, based on the cluster
conditions, it estimates that it is impossible for the job to
complete before its deadline, then, it drops the job.

1) Resource Estimation: To achieve this, it updates the
deadlines for jobs in the queue, reducing each by the time
that has passed since submission (line 3 in Algorithm 2).
Then, it estimates the minimum amount of resources the job
requires to meets its deadline (Function estimate_req in
Algorithm 3). That happens by a subsequent call to Func-
tion calc_alloc_fract in Algorithm 3 that computes
the CPU allocation fraction (fraction) for each newly
submitted job as the average of the LastCPUFrac and
either MinCPUFrac or MaxCPUFrac, as shown in Algo-
rithm 3, depending on whether the last completed job met
or missed its deadline, respectively. In other words, consec-
utive successes make Justice more aggressive, causing it to
allocate smaller resource fractions (i.e., fraction converges
to MinCPUFrac), while deadline violations make Justice
more conservative, causing it to increase the fraction in an
attempt to prevent future violations (fraction converges to
MaxCPUFrac).

The fraction produced by Function calc_alloc_fract
is further improved by a Kalman filter mechanism (Func-
tion admission_control. Every time a job completes
its execution, Justice tracks the estimation error and uses
it to correct the CPU allocation fraction. Estimation error
is the difference between the allocation fraction and the
ideal minimum fraction (deadlineCPUs). Justice calcu-
lates a weighted average of the historical errors (Function
correct_alloc_fraction) and adds it to the allocation
fraction. Justice can be configured to assign the same weights
to all past errors or to use exponential smoothing (i.e., to weigh
recent values higher than those that occurred in the distant
past). Lastly, a validate function (that we do not include on
the algorithm for brevity) ensures that the corrected fraction
remains within allowable limits (no less than the minimum
observed MinCPUFrac or greater than 1).

After Justice computes, corrects, and validates
alocCPUFrac, it considers the time that the job has
spent in the queue (line 26 in Function estimate_req
of Algorithm 2). Justice multiplies alocCPUFrac by the
number of tasks requested on job submission and uses this
value as the number of CPUs to assign to the job (Function
estimate_req in Algorithm 2).

2) Admission Control: Justice recomputes the CPU alloca-
tion of each enqueued job and, as part of its admission control
policy, it either drops the ones with infeasible deadlines or
keeps those that cannot be admitted but are still feasible (lines
12 and 18 respectively in Algorithm 2). Justice implements a
proactive admission control mechanism to prevent jobs likely
to miss their deadline from entering the system and consuming
resources wastefully. This way, Justice attempts to maximize
the number of jobs that meet their deadline even under severe
resource constraints. Justice also tracks jobs that violate their
deadlines and selectively drops some of them to avoid further
waste of resources. It is selective in that it terminates jobs when
their requestedTasks exceed a configurable threshold.
Thus, it still able to collect statistics on “misses” to improve
its estimations by letting the smaller violating jobs complete



their execution while at the same time it prevents the bigger
violators from wasting resources.

The priority policy Justice uses is pluggable. In the eval-
uations of this paper we use a policy that aims to minimize
the number of jobs that miss their deadlines. For this policy
(line 10 in Algorithm 2), Justice prioritizes jobs with a small
number of tasks and greatest time-to-deadline (TTD). However,
all of the policies that we considered (including shortest time-
to-deadline) perform similarly. Once Justice has selected a job
for admission, it allocates the CPUs to the job and admits it
to the system for execution. Once a job run commences, its
CPU allocation does not change.

3) Resource Allocation: Finally, Justice allocates the cal-
culated resources to jobs (Function alloc_resources in
Algorithm 2) by creating offers according to job priorities.
Function offer_resources creates offers for jobs until
there are no other jobs to be scheduled or the available
resources are exhausted. Lastly, Justice sends these offers to
the frameworks (line 33 in Algorithm 2 - we omit Func-
tion SEND_OFFERS for brevity.

IV. EXPERIMENTAL METHODOLOGY

To evaluate Justice we use a discrete-event simulator writ-
ten in Python with industry-provided production traces. The
trace used in this paper is from a YARN cluster with 25
thousand CPU cores and more than 1 million jobs over a 3-
month period. Approximately 60% of the jobs have a single
task and 70-80% of the jobs have fewer than 10 tasks. 25%
of the jobs repeat more than once and 16% of the jobs repeat
more than 30 times. We omit further details of our test bed
due to space limitations as they are similar to [4].

We compare Justice against the fair-share allocator im-
plemented in open-source resource negotiators like Mesos
and YARN. We refer to this allocator as Baseline FS.
This allocator lacks any deadline information and therefore
executes a job even after its deadline is exceeded. We also
implement an extension of this allocator named Reactive
FS, that enforces the same FS policy but reactively terminates
a job that has exceeded its deadline. Lastly, we implement an
“oracle” allocator that knows the exact amount of resources
a job requires to meets its deadline without having, however,
knowledge of the optimal schedule.

We evaluate the robustness of our approach by running
experiments using deadline formulations from prior works [7,
16, 20] and variations on them. In particular, we assign
deadlines that are multiples of the optimal execution time of
a job as we extract it from our workload traces. We use two
types of multiples: Fixed and variable.

Fixed Deadlines: With fixed deadlines, we use a
deadline that is a multiple of the optimal execution time as
described in [16]. Each deadline is expressed as Di = x · Ti,
where Ti is the optimal runtime of the job and x >= 1.0 is
some fixed multiplicative expansion factor. In our experiments,
we use constant factors of x = 1 and x = 2, which we refer
to as Fixed1x and Fixed2x respectively.

Variable Deadlines: For variable deadlines, we com-
pute deadline multiples by sampling distributions. Jockey dead-
lines pick randomly a factor x from two possible values as

described in [7]. In this work, we use the intervals from the sets
with values (1, 2) and (2, 4) to choose x and, again, compute
Di = x ·Ti, where Ti is the minimum possible execution time.
We refer to this variable deadline formulations as Jockey1x2x
and Jockey2x4x. 90loose are a variation of the Jockey1x2x
deadlines, in which the deadlines take on the larger value (i.e.
are loose) with a higher probability (0.9) while the other uses
the smaller value. Aria deadlines are uniformly distributed in
the intervals [1, 3] and [2, 4] as described in [20]; we refer to
these deadlines as Aria1x3x and Aria2x4x, respectively.

V. RESULTS

We compare Justice in terms of fairness, deadline satisfac-
tion, and effective resource utilization, for different resource-
constrained cloud deployments, against fair share schedulers
and an oracle using multiple deadline formulations, as de-
scribed on Section IV.

A. Fairness Evaluation

Traditional fair-share allocators [6, 8] attempt to give an
“equal” share of resources to concurrently executing jobs
regardless of whether this share is sufficient to meet their
deadlines. Herein, we will refer to this form of fairness as
“equality”. To evaluate, the degree to which these allocators
achieve this goal in resource-constrained settings, we use
Jain’s fairness index |

∑n
i=1 Fi|2

n∗
∑n

i=1 F 2
i

with Fi corresponding to the
resource allocation of each job i.

To compute equality, we classify jobs based on their
maximum demand. We then calculate the index for each job
and the weighted average across indexes. Weights correspond
to the number of jobs in each class (e.g., all jobs with demand
of Y CPUs). We classify jobs in this way to avoid considering
“unfair” (or “unequal”) allocations that correspond to different
maximum demand classes because a job cannot be allocated
more CPUs than it demands.

The top graphs of Figure 1 present equality results across
all allocators and cluster capacities that we consider. The
fairness index is averaged over 60-sec intervals on the lifetime
of the workload. Justice achieves better fairness scores than
the fair-share allocators by up to 23% and 17% for the two
capacities. Even though the goal of Justice is not to preserve
equality but instead to prioritize for what we consider actual
fairness, it performs better than the fair-share allocators for
two reasons. First, Justice keeps the system less utilized and
therefore fewer jobs wait in the queue, which contributes nega-
tively to equality. Second, due to constrained resources, Justice
drops large jobs more frequently which provides opportunities
for it to facilitate fairness at a finer grain across frameworks.

We argue that “equality” is not the desired property for
deadline-driven workloads. Equality treats all jobs similarly re-
gardless of their actual resource requirements. In practice, jobs
have different priorities, max demands, and diverse deadline
tightness. Instead, “true” fairness can be measured by using
Jain’s fairness index with Fi corresponding to the fraction of
demand of each job i. For each job i, among n total jobs, we
define the fraction of demand as Fi = Ai

Di
where Di is the

resource request for job i and Ai is the allocation given to job
i. When Ai >= Di the fraction is defined to be 1.



(a) Equality Index with 2500 CPUs (b) Equality Index with 5000 CPUs

(c) Fairness Index with 2500 CPUs (d) Fairness Index with 5000 CPUs

Fig. 1: Equality Vs Fairness: Average of Jain’s fairness index adapted for equality (top graphs) and fairness (bottom graphs)
with highly constrained capacities (left graphs) and moderately constrained capacities (right graphs). Experiments denoted as
“Fixed” have deadlines multiples of 1 and 2. Experiments denoted as “Jockey” have multiples picked randomly from a set with
two values (1, 2) and (2, 4). Experiments denoted as “90loose” have 90% deadlines with a multiple of 2 and 10% deadlines
with a multiple of 1. Experiments denoted as “Aria” have multiples drawn from uniformly distributed intervals [1, 3] and [2, 4]

By using this “true” fairness metric, Justice outperforms all
“equality” allocators we evaluate in this study in clusters with
constrained resources. It achieves this by applying admission
control instead of greedily allocating resources to jobs and
by predicting the amount of resources jobs require to meet
their deadlines “just in time”. In contrast, the existing fair-
share allocators cannot be fair under constrained resources as
they cannot prevent larger jobs from taking over a significant
portion of the cluster [3, 9, 22].

In addition, Justice outperforms the oracle for variable
deadlines. This is an artifact of the oracle’s use of maximum
job demand in the formula instead of the minimum required
resources. Under this definition, our oracle is not a fairness
oracle in terms of preserving fairness globally on the system.
It is instead an oracle with respect to the minimum resource
requirements needed to satisfy each job’s deadline.

B. Deadline Satisfaction

Being just fair in deadline-driven workloads is not enough.
The main goal of a resource allocator in such settings is to
satisfy deadlines. To investigate this, we compute the Satisfied
Deadline Ratio (SDR) as the fraction of the jobs that complete
before their deadline over the total number of submitted jobs.

Figures 2a and 2b show that fair-share allocators, fail to
satisfy job deadlines as they lack deadline information and
assign resources solely based on what they consider as ”fair”.
In contrast, Justice builds a statistical model based on previous
job executions and assigns the amount of resources jobs need
to satisfy their deadlines “just-in-time”. As a result, Justice
achieves 80% of optimal allocation. Note that even the oracle
doesn’t achieve a perfect SDR ratio, because it does not have
knowledge of the perfect global schedule. Therefore, it also
has to drop jobs that cannot achieve their deadlines.

C. Effective Resource Usage and Cluster Utilization

We next evaluate the resource allocators using three metrics
that in combination show how effectively each utilizes cluster
resources. For the set of submitted jobs J1, J2, ..., Jn and their
corresponding runtimes T1, T2, ..., Tn, we consider the subset
of m < n successful jobs J1, J2, ..., Jm and the subset of
k < n failed or dropped jobs J1, J2, ..., Jk where n = m+ k.

We define Productive Time Ratio (PTR) as
∑m

i=1 Ti∑n
j=1 Tj

and

Wasted Time Ratio WTR as
∑k

i=1 Ti∑n
j=1 Tj

. Lastly, cluster utilization

is busy
idle+busy where busy is the total busy time and idle is the

total idle time across a workload.



(a) Satisfied Deadlines with 2500 CPUs (b) Satisfied Deadlines with 5000 CPUs

(c) Productive Time with 2500 CPUs (d) Productive Time with 5000 CPUs

(e) Wasted Time with 2500 CPUs (f) Wasted Time with 5000 CPUs

(g) Utilization with 2500 CPUs (h) Utilization with 5000 CPUs

Fig. 2: Deadline Satisfaction and Efficient Resource Utilization: Satisfied Deadlines Ratio (SDR), Productive Time Ratio
(PTR), Wasted Time Ratio (WTR), and cluster utilization with highly constrained cluster capacities (left graphs) and moderately
constrained capacities (right graphs) for different deadline types.



The left side on Figure 2 shows that, under severe resource
constraints, Justice spends more time productively and wastes
fewer resources. It does so by dropping jobs that are likely to
violate their deadlines according to its predictions. In contrast,
fair-share policies attempt to share resources equally between
smaller and bigger jobs. When resources are constrained, this
share is insufficient for the bigger jobs to meet their deadlines.
Moreover, Baseline FS wastes time on jobs that have already
missed their deadlines, while Reactive FS avoids doing so by
retroactively dropping such jobs.

Justice outperforms the existing fair-share allocators in all
these metrics, while at the same time it satisfies more deadlines
and achieves better fairness as discussed in Sections V-B
and V-A. This means that the smaller utilization is not a
by-product of added overhead but the result of effective
admission control that filters out jobs that would not satisfy
their deadlines under these constrained cluster resources.

The right side of Figure 2 shows that fair-share policies
might be more suitable for optimizing productive work for
clusters for which resource scarcity is not severe. In such
conditions, and in combination with higher deadline variability,
Justice might deny admission to some bigger jobs in order to
preserve fairness and to satisfy deadlines for other (smaller)
jobs. This effect is depicted both in a smaller PTR value
(Figure 2d) and lower cluster utilization (Figure 2h).

VI. CONCLUSIONS

Justice is a scheduler designed for clouds with constrained
resources, commonly found in IoT and private clouds. It tracks
job deadlines and runtime information to adapt its resource
allocation and admission control mechanisms so it can achieve
fairness and satisfy deadlines even when resource availability is
scarce. We analyze Justice’s algorithm and empirically evaluate
it using discrete-event simulation of deadline-driven, produc-
tion workloads in resource-constrained clusters. We compare
Justice to the existing fair-share allocator that ships with Mesos
and YARN and find that Justice is able to achieve better
“traditional” (equality) as well as “true” fairness, deadline
satisfaction, and better resource utilization.

This work is supported by NSF (CNS-1703560, CCF-1539586,
ACI-1541215) and AWS Cloud Credits for Research.

REFERENCES

[1] YARN Capacity Scheduler. https://hadoop.apache.org/docs/r2.
7.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html.

[2] C. Curino et al. Reservation-based Scheduling: If You’re Late
Don’t Blame Us! In: ACM Symposium on Cloud Computing.
2014, pp. 1–14.

[3] S. Dimopoulos, C. Krintz, and R. Wolski. Big Data Framework
Interference In Restricted Private Cloud Settings. In: IEEE
International Conference on Big Data. IEEE. 2016.

[4] S. Dimopoulos, C. Krintz, and R. Wolski. Justice: A Deadline-
aware, Fair-share Resource Allocator for Implementing Multi-
analytics. In: Cluster Computing (CLUSTER), 2017 IEEE
International Conference on. IEEE. 2017, pp. 233–244.

[5] S. Dimopoulos, C. Krintz, and R. Wolski. PYTHIA: Admis-
sion Control for Multi-Framework, Deadline-Driven, Big Data
Workloads. In: International Conference on Cloud Computing.
IEEE. 2017.

[6] YARN Fair Scheduler. https://hadoop.apache.org/docs/r2.4.1/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html.

[7] A. D. Ferguson et al. Jockey: guaranteed job latency in data
parallel clusters. In: ACM European Conference on Computer
Systems. ACM. 2012, pp. 99–112.

[8] A. Ghodsi et al. Dominant resource fairness: Fair allocation of
multiple resource types. In: NSDI. 2011.

[9] R. Grandl et al. Altruistic scheduling in multi-resource clusters.
In: USENIX Symposium on Operating Systems Design and
Implementation. 2016.

[10] Z. Huang et al. RUSH: A RobUst ScHeduler to Manage Uncer-
tain Completion-Times in Shared Clouds. In: 2016 IEEE 36th
International Conference on Distributed Computing Systems
(ICDCS). IEEE. 2016, pp. 242–251.

[11] R. Jain, D.-M. Chiu, and W. R. Hawe. A quantitative measure
of fairness and discrimination for resource allocation in shared
computer system. Vol. 38. Eastern Research Laboratory, Digital
Equipment Corporation Hudson, MA, 1984.

[12] K. Kc and K. Anyanwu. Scheduling hadoop jobs to meet
deadlines. In: International Conference on Cloud Computing.
2010, pp. 388–392.

[13] J. Khamse-Ashari et al. An efficient and fair multi-resource
allocation mechanism for heterogeneous servers. In: IEEE
Transactions on Parallel and Distributed Systems 29.12 (2018),
pp. 2686–2699.

[14] P. Lama and X. Zhou. Aroma: Automated resource allocation
and configuration of mapreduce environment in the cloud.
In: ACM International Conference on Autonomic Computing.
2012, pp. 63–72.

[15] S. Li et al. WOHA: deadline-aware map-reduce workflow
scheduling framework over hadoop clusters. In: Distributed
Computing Systems (ICDCS), 2014 IEEE 34th International
Conference on. IEEE. 2014, pp. 93–103.

[16] J. Liu, H. Shen, and H. S. Narman. CCRP: Customized Coop-
erative Resource Provisioning for High Resource Utilization
in Clouds. In: IEEE International Conference on Big Data.
IEEE. 2016.

[17] A. Tumanov et al. TetriSched: global rescheduling with adap-
tive plan-ahead in dynamic heterogeneous clusters. In: Euro-
pean Conference on Computer Systems. 2016, p. 35.

[18] S. Venkataraman et al. Ernest: efficient performance prediction
for large-scale advanced analytics. In: 13th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
16). 2016, pp. 363–378.

[19] T. Verbelen et al. Cloudlets: bringing the cloud to the mobile
user. In: ACM workshop on Mobile cloud computing and
services. ACM. 2012.

[20] A. Verma, L. Cherkasova, and R. H. Campbell. ARIA: au-
tomatic resource inference and allocation for mapreduce en-
vironments. In: ACM International Conference on Autonomic
Computing. 2011, pp. 235–244.

[21] K. Wang and M. M. H. Khan. Performance Prediction for
Apache Spark Platform. In: 2015 IEEE 17th International Con-
ference on High Performance Computing and Communications
(HPCC). IEEE. 2015, pp. 166–173.

[22] Y. Yao et al. Admission control in YARN clusters based on dy-
namic resource reservation. In: IEEE International Symposium
on Integrated Network Management. 2015, pp. 838–841.

[23] N. Zaheilas and V. Kalogeraki. Real-time scheduling of skewed
mapreduce jobs in heterogeneous environments. In: 11th In-
ternational Conference on Autonomic Computing (ICAC 14).
2014, pp. 189–200.

[24] W. Zhang et al. Mimp: Deadline and interference aware
scheduling of hadoop virtual machines. In: IEEE Cluster,
Cloud and Grid Computing. 2014, pp. 394–403.


