
International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

USING	 SYNTACTIC	 AND	 SEMANTIC	 SIMILARITY	 OF	 WEB	 APIS	 TO	
ESTIMATE	 PORTING	 EFFORT	

Hiranya	 Jayathilaka,	 Alexander	 Pucher,	 Chandra	 Krintz,	 Rich	 Wolski	
Department	 of	 Computer	 Science,	 UC	 Santa	 Barbara,	 CA,	 USA	

{hiranya,pucher,ckrintz,rich}@cs.ucsb.edu	
Abstract	
Service	 Oriented	 Architecture	 (SOA)	 has	 altered	 the	 way	 programmers	 develop	 applications.	 Instead	 of	 using	
standalone	 libraries,	 programmers	 today	 often	 incorporate	 curated	 web	 services,	 accessed	 via	 well-‐defined	 interfaces	
(APIs),	 as	 modules	 in	 their	 applications.	 Web	 APIs,	 however,	 evolve	 rapidly,	 making	 it	 critical	 for	 developers	 to	 be	 able	
to	 compare	 APIs	 for	 similarity	 and	 estimate	 the	 workload	 associated	 with	 “porting”	 applications	 to	 use	 different	 or	
new	 APIs	 (or	 API	 versions).	 Unfortunately,	 today	 there	 is	 no	 simple	 automated	 mechanism	 for	 analyzing	 the	 similarity	
between	 web	 APIs	 and	 reasoning	 about	 the	 porting	 effort	 that	 will	 be	 necessary	 when	 the	 web	 APIs	 that	 an	
application	 uses	 change.	 To	 address	 this	 limitation,	 we	 describe	 an	 automated	 methodology	 for	 analyzing	 API	
similarity	 and	 quantifying	 the	 porting	 effort	 associated	 with	 the	 use	 of	 web	 APIs.	 Our	 approach	 defines	 a	 simple	 type	
system	 and	 a	 language	 with	 which	 API	 developers	 specify	 the	 syntactic	 and	 semantic	 features	 of	 APIs.	 We	 also	 define	
algorithms	 that	 transform	 the	 syntactic	 and	 semantic	 features	 of	 APIs	 into	 similarity	 and	 porting	 effort	 information.	
We	 evaluate	 our	 approach	 using	 both	 randomly	 generated	 and	 real-‐world	 APIs	 and	 show	 that	 our	 metric	 captures	 the	
relative	 difficulty	 that	 developers	 associate	 with	 porting	 an	 application	 from	 one	 API	 to	 another.	 	
	
Keywords:	 	 Web	 services,	 Web	 APIs,	 Porting	 effort,	 Syntactic	 similarity,	 Semantic	 similarity,	 Axiomatic	 semantics	
__	
1. INTRODUCTION	

Web services are widely used to implement Internet
accessible applications. In this emerging development
model, programmers combine extant network accessible
services to create new applications. Developing applications
out of curated web services improves programmer
productivity over non-service-oriented methodologies by
simplifying application assembly, testing, maintenance, and
by improving the robustness of complex systems through
the reuse of software and data components offered by
providers “as-a-service”. By composing an application
from existing services that encapsulate common yet
complicated tasks, application developers are able to work
at a higher level of abstraction, thereby saving valuable
development and debugging time. Moreover, these
composed applications leverage the stability and operational
experience of their backend API providers.

A web service consists of one or more software
components each with a well-defined, but, in terms of
coding and implementation, separate application
programming interface (API). The API is network-
accessible and facilitates machine-to-machine
interoperation. Separately, the web service “stack” is
responsible for connecting each service implementation to
the API code that exposes it to its users.

The growth in the popularity of this approach to
application development has introduced several challenges
for developers. In particular, because web-service-based
applications decouple their service implementations from
their APIs, the development and maintenance life cycles for
APIs and service implementations are separated. As a

result, APIs can and do change independently of the
implementations they serve. In particular, new APIs
(offering additional features as a superset) emerge
frequently for existing services. Commercial service
providers respond to competitive pressures by adding,
modifying, deprecating, and retiring APIs regularly.
Moreover, new APIs are introduced that are similar in
functionality to existing APIs but that offer added functional
and/or business advantages. Given such “API churn”,
developers require new tools that help them reason about
API similarity and the cost of migrating, i.e. porting, an
application from one API to another to adapt to API
changes.

Toward this end, we present a new approach that
automates the process of evaluating the similarity between
two APIs or API versions, and gives developers a way to
estimate the “porting effort” required to update an
application to use a new API or version. Without such
support, developers have only their (error-prone) intuition or
must speculatively execute a port to determine its suitability.

Our approach employs simple but formal mechanisms to
analyze the similarity and compatibility of web APIs. In
particular, we combine techniques that extract syntactic and
semantic similarity from API operations. Our syntactic
analysis precisely determines the input/output type
compatibility between web APIs. Our semantic analysis
captures the functional behavior of type-compatible API
operations using syntactic structures. We then define a
scoring metric that represents porting effort and can be used
it to rank API alternatives.

To enable semantic analysis, we define a simple type
system for web APIs and a semantic description language

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

based on the popular Python programming language.
Developers use this type system and the semantic
description language to document the important syntactic
and semantic attributes of web APIs. Our syntactic
similarity analysis compares the input and output data types
of different APIs and determines if one API can be used to
replace another at a syntactic level. The semantic similarity
analysis makes use of the axiomatic semantics (i.e.
preconditions and postconditions) of web API operations, to
measure API similarity via an extended form of the Dice
coefficient on the abstract syntax trees of semantic
predicates, combined with Hoare's consequence rule applied
to API pairs. Use of axiomatic semantics allows service
developers to easily document API semantics without
delving into the internal implementation details of the web
services. This specification language is familiar to many
developers while facilitating simple static analysis.

We implement the proposed mechanisms and evaluate
them using a number of popular APIs for social media
login, airline itinerary search, and digital media video
search. Our initial results indicate that developers can
determine the similarity between web APIs and reason
about the porting effort of migrating their applications to
different web API versions and competitive
implementations, without speculatively performing the
porting. Our experimental results also show our approach to
be efficient enough to be a practical part of the software
engineering process used to develop service-composing
applications. In the sections that follow, we detail our
approach. We then describe the empirical evaluation of our
algorithms, discuss the results, and conclude.

2. FROM	 API	 SIMILARITY	 TO	 PORTING	
EFFORT	

We start with the hypothesis that application porting
effort from one API to another is inversely proportional to
the degree to which two APIs are similar. Two APIs are
comparable in terms of porting effort if they are two
different versions of the same API or expose same or similar
services. API similarity can be syntactic, i.e., two APIs
export operations with similar cardinality and data types for
their inputs and outputs. Alternatively, similarity can be
semantic, i.e., two APIs are similar in terms of the
functionality and behavior of their syntactically similar
operations. In this work, we propose mechanisms to
analyze both syntactic and semantic similarity between web
APIs.

The syntactic similarity between APIs provides a simple
yet very effective means of establishing design-time or
compile-time compatibility of different APIs. That is, if A
and B are two syntactically similar APIs (i.e. they consume
similar input data types and produce similar output data
types), an application written using A can be easily
modified and recompiled to use B. In other words, it results
in low porting effort from API A to B and vise versa. Note

that this notion of syntactic similarity is not too far from the
traditional sense of API compatibility often discussed in
programming languages and software engineering research.
In fact, our algorithm for determining syntactic similarity
among web APIs is heavily based on the typical type
checking and verification methods used in the above-
mentioned research areas.

While syntactic similarity is simple to analyze, when
considering the porting effort among web APIs, it often
results in insufficient or inconclusive information. To make
a sound judgment regarding porting effort one must also
consider the semantic similarity between the web APIs
involved. This is because it is possible for two APIs to be
syntactically identical, while having drastically different
semantics. For example consider an API that takes two
integers and returns their sum as the output. Now consider
another API that also accepts two integers and returns their
product as the output. These two APIs have identical
input/output data types, but they accomplish very different
tasks. Therefore while it is possible to easily rewrite and
recompile an application based on the first API to use the
latter API, the ported application will not work as expected
due to the semantic difference between the two APIs.

To overcome this type of run-time inconsistencies,
semantic similarity must be checked among the APIs that
are involved in the port. A semantic similarity analysis
would indicate very high porting effort between the two
example APIs discussed above, while a purely syntactic
similarity checker may determine the porting effort to be
low which is misleading.

To estimate porting effort between web APIs, we
propose a two-phase API similarity analysis. In the first
phase APIs are subjected to a syntactic similarity check.
This check results in a simple Yes/No answer indicating
whether two APIs are compatible with each other or not. If
this first step yields the APIs to be syntactically compatible,
we proceed to the second phase, where we perform a
semantic analysis on the APIs. Our semantic analysis results
in a numeric value where higher values indicate higher
porting effort (i.e. lesser similarity).

We next detail the syntactic and semantic similarity
checking process. While both mechanisms answer the same
question (i.e. whether two given web APIs are compatible)
the two mechanisms can be studied, implemented and
applied independently of each other. We find in this work
that the best results are achieved when we apply the two
mechanisms in combination.

3. SYNTACTIC	 SIMILARITY	 OF	 WEB	 APIS	

In this section we overview our approach for
establishing syntactic similarity between two web APIs.
Syntactic similarity is primarily based on the inputs and
outputs of API operations, their cardinality and data types.
This is very similar to the notion of API compatibility
commonly discussed in programming languages, compilers

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

Data: Source API S with operation set OPS and Target
API T with operation set OPT
Result: A Boolean value and a set of matching
operation pairs

M ! ∅
for s ∈ OPs do
 matched ! FALSE
 for t ∈ OPT do
 im ! input_match(s.inputType, t.inputType)
 om ! output_match(s.outputType, t.outputType)
 if im and om then
 OPT ! OPT – { t }
 M ! M ∪ { <s,t> }
 matched ! TRUE
 break
 end
 end
 if not matched then
 return FALSE, ∅
 end
end
return TRUE, M

Algorithm 1: Syntactic similarity checking algorithm

and software engineering research. Therefore the solution
we propose is heavily inspired by this already existing
research and widely used techniques.

Our algorithm takes two web API descriptions (source
API and the target API) as the input and determines whether
the calls to source API in an application can be syntactically
replaced with calls to the target API. This basically amount
to establishing that the target API supports all the operations
of the source API. In other words, for each operation in
source API, there should be a syntactically matching
operation in the target API. The syntactic match (or
syntactic compatibility) between two operations can be
defined based on the following guidelines:

• Two operations accept identical or compatible
input data types.

• Two operations produce identical or compatible
output data types.

In order to be able to automatically check for these
properties, we need a way to specify the type information
regarding API operations in a machine-readable manner.
This requires formulating a rich type system that can be
used to document the type information regarding web APIs.
Most real-world type systems can be used for this purpose.
However, in order to maintain language and vendor
neutrality, we present the following simple type system for
web APIs. This type system has been inspired by several
existing type systems used in various cross-language RPC
frameworks (e.g. Apache Thrift), and API description

languages (e.g. Swagger, WADL, JSON schema). It is not
tied to any specific programming language and therefore
can be used to describe the web APIs implemented in any
real-world language. Our type system consists of three
categories of data types:

• Primitive types: boolean, byte, i16 (short), i32 (int),
i64 (long), double, string, binary

• Container types: A list or a set of items, where all
items are of the same type. A list is ordered and
allows duplicates. Set is unordered and does not
allow duplicates.

• Complex types: A type that consists of one or more
attributes, where each attribute can be of any type.

This simple type system covers most data types
encountered in real-world web APIs. It also enables defining
high-level data types such as maps and other recursive data
structures like lists of lists.

Web APIs often define input and output data fields as
optional. To capture this information, we extend our type
system with the ability to annotate objects and attributes as
“required” or “optional”. We assume that the input API
descriptions to our analysis contain this information
alongside the type information. Other API description
languages (e.g. Swagger, WSDL, WADL, JSON Schema)
already provide support for such annotations.

Our algorithm for analyzing syntactic similarity between
web APIs accepts a source API description and a target API
description. For each operation in the source API
description, it attempts to find a syntactically compatible
operation in the target API. That is, for each source
operation it attempts to find a target operation that accepts
the same or fewer inputs, and produces the same or
additional outputs. To define this notion formally, suppose
IS and OS are the input and output types of the source API
respectively. Similarly, assume that IT and OT are the input
and output types of the target API. IS and IT are syntactically
compatible, if IT contains the same or less attributes as IS. If
IT includes any attributes that are not present in IS, they must
be annotated as optional to maintain syntactic compatibility
among the inputs. Similarly OS and OT are syntactically
compatible, if OT contains the same or more attributes as
OS. From an object-oriented programming perspective, IS
and IT are syntactically compatible if IT is a more general
type (super type) of IS. Similarly OS and OT are syntactically
compatible if OS is a more general type of OT.

When comparing complex types for syntactic matches,
the algorithm may encounter attributes, which in turn are of
complex types (due to the recursive nature of the type
system). In this case the algorithm must recursively
compare the types of the child attributes. For example,
assume a source operation, which has a complex input type
CS that contains an attribute A of type TA. Now suppose
there is a target operation, which has a complex input type
CT that also contains an attribute A, but of type T`A. When
comparing CS against CT, the algorithm must recursively
compare the types TA and T`A for syntactic compatibility.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

The algorithm iterates through the target API operations,
looking for syntactic matches based on these guidelines.
When it finds a matching target operation, the algorithm
marks the operation, so that it is not matched with another
source API operation. If the algorithm fails to locate a match
for at least one source API operation, it returns FALSE to
indicate syntactic incompatibility. It returns TRUE only if it
can find matches for all source API operations. Algorithm 1
further describes this analysis. The procedures input_match
and output_match are recursive functions that take two
types as the input, and check for their syntactic
compatibility based on the rules described earlier.

Based on the additional information available in the
input API descriptions, we can make the syntactic analysis
more sophisticated and accurate. For example, in addition to
simply comparing the input/output data types, we can also
compare the HTTP methods of operations, payload mime
types and status codes returned by the APIs. This way, a
source operation that consumes a JSON payload sent as a
HTTP POST request and produces HTTP 201 responses,
will only be matched against a target operation, which also
consumes JSON payloads sent as HTTP POST requests and
produces HTTP 201 responses in return. Most existing API
description languages already capture this additional
information regarding API operations, and hence they can
easily be included in a syntactic similarity analysis.

	
4. SEMANTIC	 SIMILARITY	 OF	 WEB	 APIS	

To define a metric for application porting effort from
one API (source API) to another (target API) using the
semantics of their operations, we require mechanisms

• with which API developers specify the semantics
of API operations

• that automate the consumption and analysis of
specified API semantics, and

• that use the output from the analysis to construct a
measure of porting effort for a pair of APIs

To define these mechanisms and the overarching
metric, we leverage and assemble extant research advances
in a simple, yet new way that enables developers to estimate
and rank the effort associated with porting their application
to a different version of a web API or to an alternative
implementation of an API. For simplicity of discussion, we
assume that a pair of APIs under consideration has a single,
syntactically matching operation. That is, in what follows,
we will examine the ability to quantify similarity between
individual API operations. As part of our future work we
plan to extend the methodology to consider multiple
operations in pairs of APIs.

4.1 Specifying	 API	 Semantics	

The first mechanism of our approach is a specification
language that developers can use to document the semantics
of the operations in their web APIs. Our goal is to define a
language that is simple, familiar, and intuitive to use that, at

the same time, enables developers to specify the meaning of
an API in a way that is amenable to efficient static analysis
for semantic similarity. Toward this end, we leverage
popular programming language syntax and tooling, and the
well-researched field of axiomatic semantics.

Our language is a strict subset of the Python
programming language. This language choice is inspired by
the widespread use of Python, Python's high level of
abstraction and available tooling, and by previous works
such as JML and Spec# that document program semantics
(behavioral interface specifications) using programming
language syntax. This latter research and that of others
shows that using the syntax of familiar and popular
programming languages to document API semantics
facilitates programmer creation and editing of semantic
specifications.

We restrict the Python language in a number of ways to
facilitate analysis and to simplify the specification process
by API developers. Our language only accepts single-lined
Python statements that are free of side effects. We disallow
side effects to preclude the consideration of internal service
state. We also disallow conditionals, loops, try-catch blocks,
class definitions, and function definitions.

Developers use this language to describe the behavior
of API operations using axiomatic semantics --
preconditions that hold prior to invoking the operation and
postconditions that hold after the operation executes. We
leverage axiomatic semantics as a first step toward
describing and analyzing API operations in a way that
reflects porting effort. We plan to consider other successful
approaches to describing the function and behavior of API
operations as part of future work.

Developers refer API request parameters and response
parameters using the built-in logical variables input and
output, respectively. For example, for an operation that
takes two positive numbers and responds with their sum, the
preconditions can be documented using the statements
input.x > 0 and input.y > 0; the postconditions can be
documented as output.sum == input.x + input.y. These
logical variables have been inspired by Hoare logic and
separation logic to differentiate precondition values from
postcondition values. The use of logical variables also
enables expressing postconditions relative to preconditions,
that is, postconditions can refer to the pre-state (request
state) of an operation.

We do not allow invoking arbitrary functions using our
language. This includes the built-in functions of Python as
well as any class-level functions that can be invoked as
object methods. However, we do support a number of useful
predefined, side-effect-free, functions (that we have
defined) when invoked as built-in functions (as opposed to
object methods). We currently support the functions len,
implies, forall, exists, matches, datebefore, and dateformat.
We illustrate the use of a subset of our built-ins using
simple examples below. Our language and built-ins are

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

Data: Source API S with predicate sets Spre, Spost and
Target API T with predicate sets Tpre, Tpost
Result: Porting effort

Mpre ! ∅, Mpost ! ∅
Peff1 ! 0, Peff2 ! 0
Temp1 ! EmptyMap, Temp2 ! EmptyMap

for <x,y> ∈ (Spre x Tpre) do
 map_store(Temp1, <x,y>, Sim(<x,y>))
end
while unmarked(Spre) and unmarked(Tpre) do
 <<x,y>,Di> ! map_get_max(Temp1)
 mark(Spre, x), mark(Tpre, y)
 map_remove(Temp1, <x,y>)
 Mpre ! Mpre ∪ {<x,y>}
 Peff1 ! Peff1 + (1 – Di)
end
Peff1 ! Peff1 + |Tpre| - |Mpre|

for <x,y> ∈ (Spost x Tpost) do
 map_store(Temp2, <x,y>, Sim(<x,y>))
end
while unmarked(Spost) and unmarked(Tpost) do
 <<x,y>,Dj> ! map_get_max(Temp2)
 mark(Spost, x), mark(Tpost, y)
 map_remove(Temp2, <x,y>)
 Mpost ! Mpost ∪ {<x,y>}
 Peff2 ! Peff2 + (1 – Dj)
end
Peff2 ! Peff2 + |Spost| - |Mpost|

return Peff1 + Peff2

Algorithm 2: Porting effort evaluation algorithm

easily extended if and when more expressive power is
required.

• Password input must be at least 6 characters long:
o len(input.password) >= 6

• All entries in the input list named scores must be
within the range [0,100]:

o forall(entry, input.scores, 0 <= entry and
entry <= 100)

• The format of the publishedDate output field is
yyyy-MM-dd:

o dateformat(output.publishedDate, `yyyy-
MM-dd')

• If the country input field is set to US, the currency
output field will be set to USD:

o implies(input.country == `US',
output.currency = `USD')

Note that most of the above functions are not part of

the standard Python programming language. We have added
them in our API description language as native constructs.
The following examples illustrate how some of the above
functions can be used to document API preconditions and
postconditions. As seen from the above examples, our
Python-based syntax coupled with the built-in functions, can
be used to document even the most complex of the API
semantics. The language can be easily understood by human
developers, and can be easily processed by programs using a
simple language parser. New built-in functions can be
introduced to extend the language, and enhance its
expressive power.

4.2 Comparing	 API	 Operations	 Pairwise	

We next determine a similarity “score” by comparing
the preconditions and postconditions of individual API
operations. Throughout the remainder of this paper, we refer
to the specified preconditions and postconditions of an API
simply as semantic predicates. We represent semantic
predicates as abstract syntax trees (ASTs).

To compare a pair of matching API operations, we
compute a tree similarity metric on their ASTs. To enable
this, we employ a technique that is widely used for software
plagiarism detection and source code evolution analysis,
called the Dice coefficient. The Dice coefficient has been
shown in this past work to accurately extract the semantic
similarity of two code fragments. Using the Dice
coefficient, we treat each AST as a set of nodes over which
we compute set similarity. Specifically, if P1 and P2 are two
semantic predicates whose ASTs are T1 and T2 respectively,
we compute the degree of similarity between the predicates
P1 and P2 by computing the Dice coefficient on T1 and T2 as
follows.

	

C is the number of nodes common to both T1 and T2. L
is the number of nodes unique to T1 and R is the number of
nodes unique to T2. This approach enables us to obtain a
similarity value between 0 and 1 for any two given semantic
predicates, where 0 indicates a total mismatch and 1
indicates a perfect match.

We also apply a trivial transformation on the semantic
predicates when performing semantic comparison that
breaks disjunctive and conjunctive predicates into their
constituent predicates. This enables our mechanism to
handle situations where the same set of predicates has been
expressed in two APIs, but in slightly different formats.

Notice that the amount of work necessary to port from
one API to another is affected by the number of predicates
in each. In particular, the effort to port from a source API
with fewer preconditions than the target API is more
difficult than porting in the reverse direction.

To illustrate this asymmetry, let M and N be two web
APIs where N has more preconditions than M. It is more
difficult to port from M to N than from N to M. More

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

preconditions imply that N's input set is more restricted than
M. Therefore it cannot support all the inputs that M does.
Hence some extra effort has to be put in by the developer to
make sure that the application doesn't pass an unsupported
input value to API N. However, by the same argument,
porting an application from N to M should be easier. Since
M's input set is less restricted than N, the developer doesn't
have to do any extra work in this case.

Notice also that a similar asymmetry exists with
respect to postconditions. If an application is to be ported
from API S to API T and if T has more postconditions than
S, then porting S to T is easier than the other way around.
More postconditions help further restrict the output of API
T. In other words, T may not produce an output that S
doesn't. Therefore the application should be able to handle
all the outputs generated by T, without having to make any
code changes. Also, porting from API T to S becomes more
difficult, since S might produce an output that T doesn't.

4.3 Quantifying	 Porting	 Effort	 of	 Operations	

Using the mechanism described in the previous section,
we construct a measure of application porting effort using
the semantic similarity of two APIs. Suppose S is a source
API with the precondition set Spre and the postcondition set
Spost. Suppose T is a target API with the precondition set Tpre
and the postcondition set Tpost. To compute the porting
effort from S to T, we first compare each member in Spre
against each member in Tpre. That is, we calculate the
similarity (Dice coefficient) of each predicate pair in Spre x
Tpre. Then we choose the pairs with the highest similarity,
and match each member in Spre to a member in Tpre. In other
words, for each predicate x ∈ Spre we assign a predicate y ∈
Tpre such that the similarity of <x,y> is greater than the
similarity of any <x,z> where z ∈ Tpre and y ≠ z. Matched
pairs are put into a new set Mpre. We also make sure that no
member in Spre or Tpre is matched to multiple counterparts.
That is, whenever we insert a pair <x,y> into Mpre, we mark
x in Spre and y in Tpre so that they cannot be considered for a
match again. This way each member in Spre can be matched
to a unique member in Tpre as long as |Spre| ≤ |Tpre|. But if
|Spre| > |Tpre| some members of Spre will remain unmatched.

We translate the predicate assignments into a porting
effort score by computing (1 - Di) where Di is the similarity
of the pair i ∈ Mpre. We add these values up to obtain an
initial porting effort score Peff1. Then we consider the
remaining unmatched (unmarked) predicates in Spre and Tpre.
Recall that porting to an API with more preconditions is
more difficult than in the reverse direction. To reflect this
asymmetry in our methodology, we increase Peff1 by 1 for
each unmatched predicate in Tpre. Unmatched predicates in
Spre are ignored. Therefore, we have:

	

We perform a similar computation for postconditions
using the sets Spost and Tpost. We compute the similarity of
the members of Spost x Tpost and pick the pairs with the
highest similarity to initialize a matching set Mpost. As a
postcondition pair <x,y> inserted to Mpost, we mark x in Spost
and y in Tpost to ensure that no predicate is matched multiple
times. Then for each pair j ∈ Mpost we compute (1 - Dj)
where Dj is the similarity of the pair j, and add these values
up to obtain the porting effort score Peff2. We further
penalize the porting effort by increasing Peff2 by 1 for each
unmarked (unmatched) predicate in Spost. This adjustment
accounts for the greater difficulty associated with porting
from an API with more postconditions to one with fewer
postconditions.

	

We calculate the final porting effort score by
combining the values from previous computations. If
Peff(S,T) is the porting effort from API S to API T, we have:

	

Algorithm 2 further illustrates our porting effort
evaluation method. Temp1 and Temp2 are map data
structures that support storing key-value pairs. The
algorithm makes use of following named procedures:

• map_store(map, key, value) - Stores the given key-
value pair in the map.

• map_get_max(map) - Returns the key-value pair
with the largest value in the map.

• map_remove(map, key) - Removes the entry with
the specified key from the map.

• mark(set, element) - Marks the specified element in
the set.

• unmarked(set) - Returns TRUE if the set contains
at least one unmarked element. Otherwise returns
FALSE.

• Sim(<x,y>) - Returns the similarity (Dice
coefficient) of the predicate pair <x,y>.

5. TWO-‐PHASE	 API	 SIMILARITY	 ANALYSIS	

In this section we combine our syntactic analysis and
semantic analysis into a single algorithm. The inputs to the
algorithm are two web API descriptions (the source API and
the target API), documented using our type system and the
Python-based semantic description language. Algorithm
outputs a sequence of matching (i.e. syntactically
compatible) operation pairs and the porting effort value for
each pair. If the algorithm fails to detect any syntactically
compatible operation pairs between the source and target
API, it simply returns an empty set.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

Data: Source API S with operation set OPS and Target
API T with operation set OPT
Result: Compatible operation pairs with their porting
effort

Compatible, M ! syntactic_similarity(S,T)
if Compatible then
 R ! ∅
 for <s,t> ∈ M do
 s` ! define_api(s), t` ! define_api(t)
 effort ! semantic_similarity(s`,t`)
 R ! R ∪ { <s,t,effort> }
 end
 return R
end
return ∅

Algorithm 3: Two-phased API similarity analysis

The algorithm first performs syntactic similarity analysis
on pairs of operations. Each pair consists of one operation
from the source API, and one from the target API. We
attempt to match each source API operation with a
syntactically compatible target API operation. The
algorithm returns the empty set and halts if it cannot find a
matching target operation for at least one source API
operation. The algorithm ensures that each target API
operation is matched to at most one source API operation.

If this initial phase of syntactic analysis succeeds in
matching all source API operations with target API
operations, the algorithm proceeds to the second phase.
Here the algorithm performs a semantic analysis on each of
the matched operation pairs. Final output of the algorithm is
a list of matching operation pairs and their corresponding
porting effort values. If the algorithm returns the empty set
(in first phase), it implies that a straightforward port
between the given source and target APIs is not possible
(i.e. at least one of the required operations are not supported
by the target API). If the algorithm returns a list of matching
operations, the associated porting effort values can be used
to estimate the difficultly of the port in practice.

Algorithm 3 illustrates the outline of our two-phase API
similarity analysis method. The procedures
“syntactic_similarity” and “semantic_similarity” in the
listing are functions that invoke algorithm 1 and algorithm 2
respectively. The procedure “define_api” is a helper method
that defines a temporary API specification from the
operation provided as input. This is there simply because we
have defined algorithm 2 to accept two complete API
specifications as the input. In a real-world implementation
this can be simplified or even avoided if necessary.

6. PROTOTYPE	 IMPLEMENTATION	

We implement the proposed syntactic similarity analysis
and the semantic similarity analysis as a command-line tool.
This tool is programmed in Python and in total consists of
around 750 lines of code. It takes as input two API
descriptions documented using an extended form of
Swagger. Swagger is a popular JSON-based description
language that syntactically describes REST APIs. It uses a
type system very similar to the one described in section 3,
and also captures individual operation names, HTTP
methods, media types of message payloads and error codes.
We extend the base Swagger description language by
introducing two new JSON attributes to the operation
description. These attributes are named “requires” and
“ensures” (inspired by JML). Each attribute points to a list
of semantic predicates written using our Python-based
semantic description language. The “requires” attribute
holds the preconditions of the operation, and the “ensures”
attribute holds the postconditions. This extension results in a
more complete API description that consists of both type
information (for syntactic similarity checking) and
axiomatic semantics (for semantic similarity checking).

Our decision to base our prototype on the Swagger API
description language has been motivated by several reasons.
These include simplicity, openness of the standard,
widespread adoption in the industry, existence of many
tools and libraries to process Swagger descriptions and
existence of tools to auto-generate Swagger descriptions
from web service codes.

We have kept our prototype very simple and lightweight.
In its present state, it does not make use of any third party
libraries except for the standard Python modules. Swagger
specifications are read from the file system and parsed as
JSON strings using Python’s native JSON support.
Semantic predicates are parsed into their AST
representations using Python’s built-in “ast” module. This
greatly simplifies the implementation, and prevents us from
having to write our own grammar rules or parser to process
semantic predicates.

6.1 Auto-‐generating	 API	 Specifications	

In this section we briefly discuss the issue of auto-
generating API descriptions with type information and
semantic predicates, so they can be used for the type of
analyses described in our work. We believe that the ability
to auto-generate details API specifications is crucial for this
type of automated analyses and tools to be widely adopted
and deployed in the industry. Handcrafting specifications
for complex web APIs takes time, can be error prone and
can result in various software maintenance complexities in
the long run.

As a part of our research, we have implemented tools
that can auto-generate Swagger API descriptions from the
web services coded in Java (JAX-RS) and Python. The auto-
generated specifications list the operations of the APIs,
along with their HTTP methods, status codes, mime types
and input/output data types. Swagger uses a type system

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

Table I. Syntactic similarity analysis results.

Scenario Expected Result Actual Result Generated Description
Adding a new optional input parameter TRUE TRUE None
Adding a new required input parameter FALSE FALSE Required input parameter

introduced in new API
Removing an input parameter TRUE TRUE None
Renaming a required input parameter FALSE FALSE Required input parameter

introduced in new API
Renaming an optional input parameter TRUE TRUE None
Adding a new optional output parameter TRUE TRUE None
Adding a new required output parameter TRUE TRUE None
Removing an output parameter FALSE FALSE No match found for output field
Renaming a required output parameter FALSE FALSE No match found for output field
Renaming an optional output parameter FALSE FALSE No match found for output field
	

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 15 20 25 30 35 40 45 50

A
ve

ra
g

e
 E

xe
cu

tio
n

 T
im

e
 (

m
s)

Number of Attributes Per Type

Recursion Level 1
Recursion Level 2
Recursion Level 3

	

Figure 1: Average execution time of the syntactic analysis

very similar to the one discussed in section 3, which is
serialized into JSON Schema. In case of Java web services,
we have implemented a Maven plug-in that gets activated at
the compile-time of the source code, which performs static
analysis on the code to generate the necessary Swagger API
descriptions. It extracts the necessary metadata out of
method signatures and JAX-RS annotations and Javadoc
comments present in the code. In case of Python (which is
not a compiled language), we provide a separate command-
line tool that needs to be invoked manually to parse the
source and generate the API specifications. This tool also
extracts the required metadata from Python method
signatures, decorators and docstrings available in the code.

Our tools currently do not facilitate generating API
specifications with semantic information. We have left his
feature for future work. We intend to utilize the techniques
popularized by frameworks such as JML and PyContracts to
extract the required axiomatic semantic predicates from
source code into the API specifications. That is, the
developers will be required to document their source code
with the proper axiomatic semantics (using comments and
annotations), and the API specification generators will pick
up this information from the code. The design by contract
research corpus already describes mechanisms that can be
used to automatically check and enforce these semantic
constraints at run-time, which will ensure that the web
service implementations never stray away from their
documented semantic contracts.	
7. EXPERIMENTAL	 RESULTS	

We have developed our prototype so as to be able to
separately evaluate each phase of the analysis. We first
consider syntactic similarity analysis and then evaluate
semantic analysis in detail. For the latter, we consider
randomly generated API specifications to study various
characteristics of our API porting effort metric. We then
consider real-world APIs and developer-perceived porting
effort, and evaluate the overhead of our approach.

7.1	 Syntactic	 Similarity	 Results
To evaluate the effectiveness of our syntactic similarity

analysis, we take the Swagger specification of an existing
test API, and create multiple modified versions of it. Each
modified version demonstrates a possible way the input and
output data types of an API operation can change in real-
world API deployments. Then we run our syntactic
similarity analysis algorithm on the original API
specification and each of its modified versions, and record
the output of the algorithm. In addition to the simple
TRUE/FALSE output of the algorithm, our prototype
implementation also gives a textual description of the
changes it detects between compared API specifications.
We record these results in Table I.

Our experimental results show that the proposed
syntactic similarity analysis is capable of detecting all
possible ways data types of an API operation can change
(i.e. addition, removal and modification of type attributes).
Further, our prototype is capable of pinpointing the exact
differences between input/output types of APIs, when there
are incompatibilities among them.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

P
ro

b
a

b
ili

ty

Porting Effort

Social Media APIs
Airline APIs

Video Search APIs

	

Figure 3: Porting effort CDFs for real-world APIs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

P
ro

b
a

b
ili

ty

Porting Effort Score

10 Predicates Per API
20 Predicates Per API
50 Predicates Per API

	

Figure 2: Porting effort CDFs for randomly generated APIs

Next, we evaluate the performance of syntactic

analysis. We handcraft a series of API specifications, with
different attribute (parameter) counts per input/output type,
and different levels of recursion (nesting of types within a
type). We compare each specification against itself using
our algorithm 1000 times, and calculate the average
execution time of a single run of the algorithm. Figure 1
depicts the results of this experiment.

The data shows that our syntactic similarity analysis
scales linearly with the number of attributes available in
data types. Also note that the y-axis of Figure 1 is in
milliseconds, which implies negligibly small overhead (<
5ms) even in the worst case under consideration (50
attributes per type, with 3 levels of nesting).

7.2	 Randomly	 Generated	 APIs	

In our next experiment, we randomly generate a
population of 100 API specifications. Each specification has
a single operation. We semantically compare each API
against all others in the population and compute the porting
effort between them. We repeat this experiment using
different numbers of semantic predicates. We randomly
generate the API specifications with 10, 20 and 50 semantic
predicates. Our goal with this experiment is to understand
how our measure of porting effort changes under these
scenarios (e.g. to determine the sensitivity of the mechanism
to supplied parameters).

Figure 2 shows the cumulative distribution functions
(CDFs) of the computed porting effort as a function of the
number of predicates per single API operation. A porting
effort value of 0 indicates no porting effort. The data shows
that the porting effort between API operations increases
with the number of semantic predicates. For example, the
maximum porting effort observed in APIs with 10 semantic
predicates is 17.4. This goes up to 30.1 when the number of
predicates is increased to 20. It further increases up to 44.9
when the semantic predicates count is set to 50. Also, when
considering the CDFs of the porting effort, 50% of the API

operation pairs have 4.3 or less porting effort in the
population with 10 semantic predicates. In the population
with 20 semantic predicates, 50% of the APIs have 7.1 or
less porting effort. In the population with 50 semantic
predicates, this limit further increases up to 12.9. This is
inline with our experience in which, as the number of
semantic predicates increases, the API consumer is forced to
adhere to additional restrictions. As such, when porting
among different web API operations, the developer has to
take more constraints into account and must write more
code to reconcile the differences. This results in increased
porting effort. Our experimental results suggest that our
porting effort metric captures this phenomenon.

It is also interesting to note that our porting effort values
are not bounded by any upper limit. The porting effort could
be arbitrarily large depending on the number and the
complexity of the semantic predicates. We believe that this
property of the metric reflects current practice. That is, it is
always possible to find or create two new APIs E and F,
such that the effort it takes to port an application from E to
F is greater than any previously known upper bound. Our
porting effort evaluation mechanism captures this property.

7.3	 Publicly	 Available,	 Real-‐World	 APIs

We next investigate the efficacy of our approach using
popular, publicly available web APIs. We list these APIs
below. To evaluate our porting effort metric, we have
augmented the APIs with semantic specifications manually.
To enable this, we carefully analyze the API documentation
and examples related to each of these web APIs.
Specifically, we identify an important operation from each
API set that was present across the set and specify its
pre/postconditions using our specification language. Thus,
these results pertain the similarity between an individual
API operation that is common to all APIs in a set (either
social media, airline services, or digital media).

• Social media login APIs: Facebook, Google,
LlinkedIn, Twitter, Yahoo, Hi5, Amazon

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

P
e

rc
e

n
ta

g
e

 V
a

ri
a

n
ce

 (
%

)

Number of Clusters (k)

Social Media APIs
Airline APIs

Video Search APIs

	

Figure 4: Percentage variance of porting effort

 0

 20

 40

 60

 80

 100

Social Media Airline Video Search

P
e

rc
e

n
ta

g
e

 A
cc

u
ra

cy
 (

%
)

D1
D2

	

Figure 5: Percentage accuracy of the classification

• Airline itinerary search APIs: American Airlines,
British Airways, Cathay Pacific, Delta Airlines,
Emirates, Etihad, Singapore Airlines, United
Airlines, Virgin America

• Digital media video search APIs: Youtube, iTunes,
MovieDB, RottenTomatoes, Vimeo

We then compute the porting effort among each pair of
APIs within each of the above three categories. We present
the CDFs of the results in Figure 3.

The data shows that a fairly large proportion of the API
pairs have a low porting effort. For instance, in all three
populations (social media, airlines and video search), 50%
of the pairs have a porting effort of 3.3 or less, a
characteristic not present in the data obtained from the
randomly generated APIs. This is because, unlike in the
randomly generated populations where most APIs are
completely unrelated to each other, in real world API
populations most APIs can and do have commonalities. For
instance, most social media login APIs have similar
constraints on username and password. Most airline APIs
have similar requirements with respect to specifying
departure and arrival cities, travel dates and the number of
passengers. Most video search APIs also exhibits similar
constraints, in that most APIs at least accept simple text
queries to perform keyword-based search. These similarities
simplify application porting.

The CDFs of the social media APIs and the airline APIs
follow relatively similar trends. However, the CDF of the
video search APIs deviates from the other two and reaches a
maximum porting effort value close to 35. A closer look at
the API specifications showed that social media APIs and
the airline APIs are similar in terms of their average
semantic predicate count (8.1 and 9.3 respectively). For the
video search APIs, the average predicate count is as high as
15.6 thus resulting in an increased porting effort among
them. Also, some of the video-search APIs have a large
number of semantic predicates compared to the others. For
instance, Youtube search API has 28 semantic predicates,
and the iTunes search API has 30 semantic predicates.
Therefore ports that involve these APIs tend to be much
more complicated than the others.

7.4	 Categorizing	 API	 Porting	 Difficulty

Given this efficacy (particularly for the real-world
APIs), we can determine categories of difficulty. That is,
we can use the methodology to “cluster” API ports into
groups that can be ranked in terms of difficulty (e.g. is a
port “easy” or “hard”?)

To investigate this hypothesis we use k-means clustering
to classify the results into two groups (i.e. k = 2). Figure 4
shows, for each sample set, the ratio of the variance
explained by the categorization to the total variance in the
set. Typically, this analysis shows an “elbow” in the curve
corresponding to the point where further categorization adds
little explanatory power. In our study, that point of
diminishing returns appears at k = 2.

Thus, for these API operations, it appears that our
methodology should be able to divide pairwise porting
effort into two categories: “easy” and “difficult”. We then
asked two of our lab members (lets call them D1 and D2)
conversant with web services but not otherwise associated
with this project to categorize the porting difficulty of a
subset of the porting possibilities in each set as either “easy”
or “difficult”.

We gave these developers three sample sets, each
consisting of 5 API specifications, randomly chosen from
the above three categories (social media, airlines and video
search). We then asked each developer to analyze the API
specifications pairwise, and classify all possible pairs into
two groups -- easy and difficult -- depending on the
potential complexity of porting an application from one API
to another. We also computed the porting effort between
these web APIs using our own prototype, and used k-means
clustering to classify the results into two groups (i.e. k = 2).

Figure 5 shows the percentage accuracy of the
classifications computed using our formal mechanism with

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 10 15 20 25 30 35 40 45 50

A
ve

ra
g

e
 E

xe
cu

tio
n

 T
im

e
 (

m
s)

Predicates Per API 	

Figure 6: Average execution time of the semantic analysis

respect to the classifications provided by developers D1 and
D2 respectively.

We compute the percentage accuracy as the ratio of the
number of entries classified as the same (i.e. agreement
between the developer and the methodology) to the total
sample size. In terms of a simple categorization, the
agreement is good. Indeed, developer D2 and the
methodology obtained the same classification (100%
accuracy) for the social media API operation.

7.5	 Overhead	 of	 Semantic	 Analysis	
Finally, we the time overhead associated with computing
porting effort using our mechanism. We employ our
randomly generated set of 100 API specifications and
compute the porting effort between each pair of APIs. We
measure the time elapsed for all steps and then compute the
average time per API pair. We repeat the experiment,
varying the total number of semantic predicates in each API
specification. We report the average times that we observe
in these experiments in Figure 6.

For web APIs with 10 semantic predicates, our
evaluation method takes less than 10ms. This increases up
to 200ms when the predicate count is increased to 50. This
increase in execution time is due to the pairwise AST
comparison operations performed by our algorithm. That is,
when computing the porting effort between two APIs, our
prototype compares each precondition of the source API
against each precondition of the target API. In the same
fashion, our prototype compares each postcondition of the
source API against each postcondition of the target API.
Therefore the number of AST comparisons performed is
polynomial in the number of semantic predicates. Hence the
average execution time of our algorithm increases
polynomially with the increase in semantic predicates.
However, for web APIs with 10 semantic predicates, the
average execution time is below 10ms and for web APIs
with 20 semantic predicates, the average execution time is
well below 50ms. Since most of the real world web APIs
that we have studied to date have a small number of

predicates (the max was 30), our approach is not likely to
impose a significant time overhead on the development
process for applications. If required, the algorithm can be
easily parallelized by running the pairwise AST
comparisons in parallel to reduce the overhead further.

Compared to the execution time of the syntactic
similarity analysis, however, the semantic similarity
analysis takes much longer to complete. This indicates that
in our two-phased API similarity analysis algorithm, the
semantic similarity analysis component is the more
expensive and critical element in terms of time complexity.

Overall, our porting effort evaluation method produces
useful results with a high level of accuracy. The method is
efficient, and can be easily applied to real world web APIs.
The Python-based syntax simplifies documentation and
publication of API semantics (relative to semantic
ontologies, state machines, and formal logic) by API
providers. If an API provider fails to publish API semantics
in our language, API consumers (developers) can easily
create API specifications on their own by converting the
semantics of API operations described in the API
documentation into Python code.

8. RELATED	 WORK	

This paper is an extension of our initial investigations
into semantic analysis of web APIs. This work, in general,
builds upon and extends research from a number of other
areas in computer science. These areas include
programming language and web service semantics, analysis
and verification.

Static type checking techniques have been in
widespread use for decades and make up one of the corner
stones of programming languages research. We employ
some very traditional and basic type checking mechanisms
to implement our syntactic similarity analysis. The proposed
input/output type comparison rules have strong roots in
existing type checking techniques and object-oriented
programming. Our type system has been inspired by a
number of other type systems used in cross-language RPC
frameworks (e.g. Apache Thrift, Google Protocol Buffers)
and syntactic API description languages (e.g. Swagger,
JSON Schema, WADL). Like the type systems of cross-
language RPC systems, our type system is also not tied to
any specific programming language. It facilitates specifying
optional and required data fields, much like how most API
description languages support annotating data fields as
either required or optional.

Our approach of using axiomatic semantics to describe
web APIs is rooted in the work of Floyd and Hoare. Floyd
modeled computer programs as digraphs where vertices
represent program statements and edges represent control
flow. Predicates representing correctness conditions are
attached to the edges. Hoare introduced the notion of Hoare
triples and constructed a formalism for reasoning about
program correctness using them. A Hoare triple is a logical

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

construct of the form P{C}Q where C is a command (an
operation) in a program, P is the set of preconditions of C
and Q is the set of postconditions of C. We adapted this
formalism into our work where we reason about web
services by describing their operations along with the
respective preconditions and postconditions. Hoare's
seminal work on using axiomatic semantics to reason about
program correctness excludes side effects and arbitrary
procedure calls. In this work, we follow the same approach
for semantic predicate description language to facilitate low
complexity and thus fast evaluation of API porting effort.

Several researchers have been successful in using
axiomatic semantics to reason about the correctness and
behavior of software constructs. Hoare himself, along with
Wirth showed how axiomatic semantics can be used to
describe Pascal programs. Fikes and McGuiness used
axiomatic semantics to describe RDF data models. Gegg-
Harrison et al introduced ProVIDE, a software development
tool that allows the user to establish program correctness via
specifying postconditions and then generating the
corresponding preconditions. Black used axiomatic
semantics to verify the behavior of a secure web server.

Our guidelines for comparing web API semantics are
loosely based on Hoare's rule of consequence. The rule of
consequence states that if P{C}Q and P'{C'}Q' are two
Hoare triples such that P " P' and Q' " Q, then the
command C' can be used in any context where the command
C can be used. This is because C' has more permissive
preconditions and more restrictive postconditions compared
to C. We follow a similar rule when comparing web APIs
with unequal number of preconditions or postconditions.
Naumann and Olderog have made similar arguments.

The use of programming language syntax for
expressing program semantics and contracts is a widely
used concept. JML uses two primary annotations (requires
and ensures) to document the preconditions and
postconditions of Java methods using Java syntax. Spec#
provides similar functionality for the C# language. SPARK
language has built-in contract documentation features,
where contracts are encoded in the source code as Ada
comments. These technologies use the documented
semantics or contracts mostly for verification purposes. That
is, they verify whether the program adheres to the given
contract at the runtime. We use the documented semantics at
the development time to reason about web service semantics
and porting effort by applying static analysis methods.

The use of AST representations to compare programs
and reason about them is also well researched. Our approach
is heavily based on the work of Baxter et al, where they
used AST comparison methods for detecting program
clones. Baxter et al introduced the notion of syntactic
similarity (based on the Dice coefficient), as opposed to
exact matches, as a more practical means of finding
program segments with similar functionality and behavior.
Cui et al showed how to use AST comparison methods for
source code plagiarism detection. They showed that AST

comparison based methods are capable of finding a wide
range of similarities between different programs. Hashimoto
and Mori augmented AST comparison methods with
heuristics-driven techniques so that they can be used to
efficiently analyze the differences between programs written
in a wide range of programming languages. Neamtiu et al
used AST comparison methods to track down and analyze
how a program code base has evolved over time.

Bianchini et al introduced the notion of semantics-
enabled web API selection patterns. One of the selection
patterns they discuss is the substitution pattern, which aims
at finding a web API that can be used to substitute another
API (i.e. porting). They presented a formalism to model and
quantify this selection pattern based on semantic ontologies.
However, constructing comprehensive semantic ontologies
requires a lot of time and manual effort, and therefore such
techniques are difficult to apply in practice. Also they
mainly focus on semantically annotating the input/output
data elements of web APIs, whereas we look at the
functional and behavioral traits of the web APIs.

There is a large body of work that uses techniques like
process models, state machine models and logic to reason
about web service behavior. However these formalisms are
aimed at addressing the issues such as discovery,
monitoring and verification. Our work deviates from these
formal methods, in the sense we attempt to reason about
developer experience of different web services, in the sense
how much effort a developer has to put in to port an
application from one web API to another.

9. CONCLUSIONS	

Increasingly, web, mobile, and cloud developers
integrate publicly available web services, exposed via well-
defined APIs, into their Internet accessible applications.
Doing so simplifies and expedites software development,
testing, deployment, and management of these applications.
Despite these benefits that arise from decoupling of APIs
from the implementations they serve, the web service model
has also introduced a key challenge for developers: API
churn -- constant API evolution (versioning) and emergence
of alternative, competitive implementations for the same
API. As a result, it is critical that developers be able to
efficiently analyze the similarity between APIs and reason
about the work required to migrate their applications from
one API (or API version) to another.

In this paper, we investigate a new methodology for
automatically analyzing API similarity and quantifying
application porting effort. Our approach defines a basic
recursive type system and a simple language based on
Python with which API developers document the syntactic
and semantic aspects of API operations. We present
algorithms that consume and analyze API features, to
automatically determine whether two given APIs are
syntactically compatible, and if so, how difficult it is to port
an application among them. We evaluate a prototype of this

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

	

	

approach using randomly generated APIs to measure the
sensitivity to the parameters we employ, and using
competitive, publicly available APIs to determine its
efficacy on real-world APIs. Finally, we show that
computation of our porting effort metric introduces minimal
overhead, making it sufficiently practical to include in a
developer's tool chain.

This work was funded in part by NSF (0751315, 0905237,
and 1218808) and NIH (1R01EB014877-01).

10. REFERENCES	
Haines, M., Haseman, W. (2009). Service-Oriented Architecture Adoption
Patterns, 42nd Hawaii International Conference on System Sciences
(HICSS), 2009, pp. 1-9.

An, L., Yan, J., Tong, L. (2008). Methodology for web services adoption
based on technology adoption theory and business process analyses,
Tsinghua Science & Technology, vol. 13, no. 3, pp. 383 – 389, from
http://www.sciencedirect.com/science/article/pii/S1007021408700610
Haines, M. (2004). Web services as information systems innovation: a
theoretical framework for web service technology adoption, Proceedings of
International Conference on Web Services, 2004, pp. 11–16.
Dan, A., Johnson, R., Carrato, T. (2008). SOA service reuse by design, in
Proceedings of the 2nd international workshop on Systems development in
SOA environments, ser. SDSOA ’08. New York, NY, USA: ACM, 2008,
pp. 25–28.

Release Notes: Amazon Web Services. (2013). Retrieved September 02,
2013, from http://aws.amazon.com/ releasenotes/Amazon- EC2.
Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Yous-
eff, L., and Zagorodnov, D. (2009). The Eucalyptus open-source cloud-
computing system, 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2009. CCGRID’09, pp. 124–131.
Twitter API v1 Retirement: Final Dates. (2013). Retrieved September 02,
2013, from https://dev.twitter.com/blog/ api-v1-retirement-final-dates.
eBay Trading Web Services: Release Notes. (2013). Retrieved September
02, 2013, from
http://developer.ebay.com/DevZone/XML/docs/ReleaseNotes.html.

Product Advertising API. (2013). Retrieved September 02, 2013, from
https://affiliate-program.amazon.com/gp/ advertising/api/detail/agreement-
changes.html.
DevOps. (2013). Retrieved September 02, 2013, from
http://en.wikipedia.org/wiki/DevOps.
Hoare, C.A.R. (1969). An axiomatic basis for computer programming,
Commun. ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969.
Dice, L.R. (1945). Measures of the amount of ecologic association between
species, Ecology, vol. 26, no. 3, pp. pp. 297–302, 1945.
Leavens, G.T. and Cheon, Y. (2006). Design by Contract with JML.
Retrieved September 02, 2013, from
http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf.
Barnett, M., Leino, K.R.M, and Schulte, W. (2004). The Spec#
programming system: an overview, Proceedings of the 2004 international
conference on Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, ser. CASSIS’04. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 49–69.
Hatcliff, J., Leavens, G.T., Leino, K.R.M., Muller, P., and Parkinson, M.
(2012). Behavioral interface specification languages, ACM Comput. Surv.,
vol. 44, no. 3, pp. 16:1–16:58.
Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Valle ́s, J.G., and
Van de Walle, R. (2012). Functional descriptions as the bridge between
hypermedia APIs and the Semantic Web, Proceedings of the Third

International Workshop on RESTful Design, ser. WS-REST ’12. New
York, NY, USA: ACM, 2012, pp. 33–40.
Shen, Z. and Su, J. (2005). Web service discovery based on behavior
signatures, Proceedings of the 2005 IEEE International Conference on
Services Computing - Volume 01, ser. SCC ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 279–286.
Halle, S., Bultan, T., Hughes, G., Alkhalaf, M., and Villemaire, R. (2010).
Runtime verification of web service interface contracts, Computer, vol. 43,
no. 3, pp. 59–66.
Reynolds, J.C. (2002). Separation Logic: A Logic for Shared Mutable Data
Structures, Proceedings of the 17th Annual IEEE Symposium on Logic in
Computer Science, ser. LICS ’02. Washington, DC, USA: IEEE Computer
Society, 2002, pp. 55–74.
Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., and Bier, L. (1998). Clone
detection using abstract syntax trees, Proceedings of International
Conference on Software Maintenance, 1998, pp. 368–377.
Swagger: A simple, open standard for describing REST APIs with JSON.
(2013). Retrieved September 02, 2013, from
https://developers.helloreverb.com/swagger.
Naumann, D.A. (2000). Calculating Sharp Adaptation Rules, Information
Processing Letters, vol. 77, p. 2001, 2000.
Olderog, E.R. (1983). On the notion of expressiveness and the rule of
adaptation, Theoretical Computer Science, vol. 24, no. 3, pp. 337 – 347.
Barnes, J. (2003). High Integrity Software: The SPARK Approach to Safety
and Security. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2003.
Cui, B., Li, J., Guo, T., Wang, J., and Ma, D. (2010). Code Comparison
System based on Abstract Syntax Tree, Proceedings of 3rd IEEE
International Conference on Broadband Network and Multimedia
Technology (IC-BNMT), pp. 668–673.
Hashimoto, M. and Mori, A. (2008). Diff/TS: A Tool for Fine-Grained
Structural Change Analysis, in 15th Working Conference on Reverse
Engineering, 2008. WCRE ’08. 2008, pp. 279–288.

Neamtiu, I., Foster, J.S., and Hicks, M. (2005). Understanding source code
evolution using abstract syntax tree matching, Proceedings of the 2005
international workshop on Mining software repositories, ser. MSR ’05.
New York, NY, USA: ACM, 2005, pp. 1–5.
Jayathilaka, H., Krintz, C., Wolski, R. (2014). Towards Automatically
Estimating Porting Effort between Web Service APIs. In 11th IEEE
International Conference on Services Computing (SCC ’14). 2014, pp.
774–781. 	

Authors

Hiranya Jayathilaka is a PhD student in
the Computer Science Department at UC
Santa Barbara (UCSB). His research
interests include distributed systems and
web/cloud services. Hiranya received a BS
degree in Engineering from the Univ. of

Moratuwa, Sri Lanka.

Alexander Pucher is a PhD student in
Computer Science at UCSB, having
received his MS degree from TU Vienna,
Austria. His research`h focuses on highly
resource-efficient cloud infrastructures
and cross-platform interoperability.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 4, October-December 2015	

	

	

Dr. Chandra Krintz is a Professor in the
Computer Science Department at UCSB.
Her research interests include cloud
platforms and programming systems, and
she is the progenitor of the open source
cloud platform-as-a-service, AppScale.

She holds MS and PhD degrees from UC San Diego.

Dr. Rich Wolski is a Professor in the
Computer Science Department at UCSB.
His research interests include cloud
infrastructures and scientific computing,
and he is the progenitor of the open source
cloud infrastructure-as-a-service (Iaas),

Eucalyptus. He holds MS and PhD degrees from UC Davis.

