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Abstract	  
Service	   Oriented	   Architecture	   (SOA)	   has	   altered	   the	   way	   programmers	   develop	   applications.	   Instead	   of	   using	  
standalone	  libraries,	  programmers	  today	  often	  incorporate	  curated	  web	  services,	  accessed	  via	  well-‐defined	  interfaces	  
(APIs),	  as	  modules	  in	  their	  applications.	  Web	  APIs,	  however,	  evolve	  rapidly,	  making	  it	  critical	  for	  developers	  to	  be	  able	  
to	  compare	  APIs	   for	  similarity	  and	  estimate	   the	  workload	  associated	  with	   “porting”	  applications	   to	  use	  different	  or	  
new	  APIs	  (or	  API	  versions).	  Unfortunately,	  today	  there	  is	  no	  simple	  automated	  mechanism	  for	  analyzing	  the	  similarity	  
between	   web	   APIs	   and	   reasoning	   about	   the	   porting	   effort	   that	   will	   be	   necessary	   when	   the	   web	   APIs	   that	   an	  
application	   uses	   change.	   To	   address	   this	   limitation,	   we	   describe	   an	   automated	   methodology	   for	   analyzing	   API	  
similarity	  and	  quantifying	  the	  porting	  effort	  associated	  with	  the	  use	  of	  web	  APIs.	  Our	  approach	  defines	  a	  simple	  type	  
system	  and	  a	  language	  with	  which	  API	  developers	  specify	  the	  syntactic	  and	  semantic	  features	  of	  APIs.	  We	  also	  define	  
algorithms	  that	  transform	  the	  syntactic	  and	  semantic	  features	  of	  APIs	  into	  similarity	  and	  porting	  effort	   information.	  
We	  evaluate	  our	  approach	  using	  both	  randomly	  generated	  and	  real-‐world	  APIs	  and	  show	  that	  our	  metric	  captures	  the	  
relative	  difficulty	  that	  developers	  associate	  with	  porting	  an	  application	  from	  one	  API	  to	  another.	  	  
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__________________________________________________________________________________________________________________	  
1. INTRODUCTION	  

Web services are widely used to implement Internet 
accessible applications.  In this emerging development 
model, programmers combine extant network accessible 
services to create new applications. Developing applications 
out of curated web services improves programmer 
productivity over non-service-oriented methodologies by 
simplifying application assembly, testing, maintenance, and 
by improving the robustness of complex systems through 
the reuse of software and data components offered by 
providers “as-a-service”.  By composing an application 
from existing services that encapsulate common yet 
complicated tasks, application developers are able to work 
at a higher level of abstraction, thereby saving valuable 
development and debugging time.  Moreover, these 
composed applications leverage the stability and operational 
experience of their backend API providers.   

A web service consists of one or more software 
components each with a well-defined, but, in terms of 
coding and implementation, separate application 
programming interface (API).  The API is network-
accessible and facilitates machine-to-machine 
interoperation. Separately, the web service “stack” is 
responsible for connecting each service implementation to 
the API code that exposes it to its users.      

The growth in the popularity of this approach to 
application development has introduced several challenges 
for developers.  In particular, because web-service-based 
applications decouple their service implementations from 
their APIs, the development and maintenance life cycles for 
APIs and service implementations are separated.  As a 

result, APIs can and do change independently of the 
implementations they serve.  In particular, new APIs 
(offering additional features as a superset) emerge 
frequently for existing services. Commercial service 
providers respond to competitive pressures by  adding, 
modifying, deprecating, and retiring APIs regularly.  
Moreover, new APIs are introduced that are similar in 
functionality to existing APIs but that offer added functional 
and/or business advantages.  Given such “API churn”, 
developers require new tools that help them reason about 
API similarity and the cost of migrating, i.e. porting, an 
application from one API to another to adapt to API 
changes. 

Toward this end, we present a new approach that 
automates the process of evaluating the similarity between 
two APIs or API versions, and gives developers a way to 
estimate the “porting effort” required to update an 
application to use a new API or version.  Without such 
support, developers have only their (error-prone) intuition or 
must speculatively execute a port to determine its suitability. 

Our approach employs simple but formal mechanisms to 
analyze the similarity and compatibility of web APIs.  In 
particular, we combine techniques that extract syntactic and 
semantic similarity from API operations. Our syntactic 
analysis precisely determines the input/output type 
compatibility between web APIs. Our semantic analysis 
captures the functional behavior of type-compatible API 
operations using syntactic structures.  We then define a 
scoring metric that represents porting effort and can be used 
it to rank API alternatives.  

To enable semantic analysis, we define a simple type 
system for web APIs and a semantic description language 
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based on the popular Python programming language. 
Developers use this type system and the semantic 
description language to document the important syntactic 
and semantic attributes of web APIs. Our syntactic 
similarity analysis compares the input and output data types 
of different APIs and determines if one API can be used to 
replace another at a syntactic level. The semantic similarity 
analysis makes use of the axiomatic semantics (i.e. 
preconditions and postconditions) of web API operations, to 
measure API similarity via an extended form of the Dice 
coefficient on the abstract syntax trees of semantic 
predicates, combined with Hoare's consequence rule applied 
to API pairs. Use of axiomatic semantics allows service 
developers to easily document API semantics without 
delving into the internal implementation details of the web 
services. This specification language is familiar to many 
developers while facilitating simple static analysis.   

We implement the proposed mechanisms and evaluate 
them using a number of popular APIs for social media 
login, airline itinerary search, and digital media video 
search. Our initial results indicate that developers can 
determine the similarity between web APIs and reason 
about the porting effort of migrating their applications to 
different web API versions and competitive 
implementations, without speculatively performing the 
porting.  Our experimental results also show our approach to 
be efficient enough to be a practical part of the software 
engineering process used to develop service-composing 
applications.  In the sections that follow, we detail our 
approach. We then describe the empirical evaluation of our 
algorithms, discuss the results, and conclude. 

 
2. FROM	  API	  SIMILARITY	  TO	  PORTING	  
EFFORT	  

We start with the hypothesis that application porting 
effort from one API to another is inversely proportional to 
the degree to which two APIs are similar. Two APIs are 
comparable in terms of porting effort if they are two 
different versions of the same API or expose same or similar 
services.  API similarity can be syntactic, i.e., two APIs 
export operations with similar cardinality and data types for 
their inputs and outputs. Alternatively, similarity can be 
semantic, i.e., two APIs are similar in terms of the 
functionality and behavior of their syntactically similar 
operations.  In this work, we propose mechanisms to 
analyze both syntactic and semantic similarity between web 
APIs.  

The syntactic similarity between APIs provides a simple 
yet very effective means of establishing design-time or 
compile-time compatibility of different APIs. That is, if A 
and B are two syntactically similar APIs (i.e. they consume 
similar input data types and produce similar output data 
types), an application written using A can be easily 
modified and recompiled to use B. In other words, it results 
in low porting effort from API A to B and vise versa. Note 

that this notion of syntactic similarity is not too far from the 
traditional sense of API compatibility often discussed in 
programming languages and software engineering research. 
In fact, our algorithm for determining syntactic similarity 
among web APIs is heavily based on the typical type 
checking and verification methods used in the above-
mentioned research areas. 

While syntactic similarity is simple to analyze, when 
considering the porting effort among web APIs, it often 
results in insufficient or inconclusive information. To make 
a sound judgment regarding porting effort one must also 
consider the semantic similarity between the web APIs 
involved. This is because it is possible for two APIs to be 
syntactically identical, while having drastically different 
semantics. For example consider an API that takes two 
integers and returns their sum as the output. Now consider 
another API that also accepts two integers and returns their 
product as the output. These two APIs have identical 
input/output data types, but they accomplish very different 
tasks. Therefore while it is possible to easily rewrite and 
recompile an application based on the first API to use the 
latter API, the ported application will not work as expected 
due to the semantic difference between the two APIs.  

To overcome this type of run-time inconsistencies, 
semantic similarity must be checked among the APIs that 
are involved in the port. A semantic similarity analysis 
would indicate very high porting effort between the two 
example APIs discussed above, while a purely syntactic 
similarity checker may determine the porting effort to be 
low which is misleading. 

To estimate porting effort between web APIs, we 
propose a two-phase API similarity analysis. In the first 
phase APIs are subjected to a syntactic similarity check. 
This check results in a simple Yes/No answer indicating 
whether two APIs are compatible with each other or not. If 
this first step yields the APIs to be syntactically compatible, 
we proceed to the second phase, where we perform a 
semantic analysis on the APIs. Our semantic analysis results 
in a numeric value where higher values indicate higher 
porting effort (i.e. lesser similarity). 

We next detail the syntactic and semantic similarity 
checking process. While both mechanisms answer the same 
question (i.e. whether two given web APIs are compatible) 
the two mechanisms can be studied, implemented and 
applied independently of each other. We find in this work 
that the best results are achieved when we apply the two 
mechanisms in combination. 
 
3. SYNTACTIC	  SIMILARITY	  OF	  WEB	  APIS	  

In this section we overview our approach for 
establishing syntactic similarity between two web APIs. 
Syntactic similarity is primarily based on the inputs and 
outputs of API operations, their cardinality and data types. 
This is very similar to the notion of API compatibility 
commonly discussed in programming languages, compilers 
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Data: Source API S with operation set OPS and Target 
API T with operation set OPT 
Result: A Boolean value and a set of matching 
operation pairs 
 
M ! ∅ 
for s ∈ OPs do 
   matched !  FALSE 
   for t ∈ OPT do 
      im ! input_match(s.inputType, t.inputType) 
      om ! output_match(s.outputType, t.outputType) 
      if im and om then 
         OPT ! OPT – { t } 
         M ! M ∪ { <s,t> } 
         matched ! TRUE 
         break        
      end 
   end 
   if not matched then 
      return FALSE, ∅ 
   end  
end 
return TRUE, M 
 
Algorithm 1: Syntactic similarity checking algorithm 

and software engineering research. Therefore the solution 
we propose is heavily inspired by this already existing 
research and widely used techniques.  

Our algorithm takes two web API descriptions (source 
API and the target API) as the input and determines whether 
the calls to source API in an application can be syntactically 
replaced with calls to the target API. This basically amount 
to establishing that the target API supports all the operations 
of the source API. In other words, for each operation in 
source API, there should be a syntactically matching 
operation in the target API. The syntactic match (or 
syntactic compatibility) between two operations can be 
defined based on the following guidelines: 

• Two operations accept identical or compatible 
input data types. 

• Two operations produce identical or compatible 
output data types. 

In order to be able to automatically check for these 
properties, we need a way to specify the type information 
regarding API operations in a machine-readable manner. 
This requires formulating a rich type system that can be 
used to document the type information regarding web APIs. 
Most real-world type systems can be used for this purpose. 
However, in order to maintain language and vendor 
neutrality, we present the following simple type system for 
web APIs. This type system has been inspired by several 
existing type systems used in various cross-language RPC 
frameworks (e.g. Apache Thrift), and API description 

languages (e.g. Swagger, WADL, JSON schema). It is not 
tied to any specific programming language and therefore 
can be used to describe the web APIs implemented in any 
real-world language. Our type system consists of three 
categories of data types: 

• Primitive types: boolean, byte, i16 (short), i32 (int), 
i64 (long), double, string, binary 

• Container types: A list or a set of items, where all 
items are of the same type. A list is ordered and 
allows duplicates. Set is unordered and does not 
allow duplicates. 

• Complex types: A type that consists of one or more 
attributes, where each attribute can be of any type. 

This simple type system covers most data types 
encountered in real-world web APIs. It also enables defining 
high-level data types such as maps and other recursive data 
structures like lists of lists.  

Web APIs often define input and output data fields as 
optional. To capture this information, we extend our type 
system with the ability to annotate objects and attributes as 
“required” or “optional”. We assume that the input API 
descriptions to our analysis contain this information 
alongside the type information. Other API description 
languages (e.g. Swagger, WSDL, WADL, JSON Schema) 
already provide support for such annotations.  

Our algorithm for analyzing syntactic similarity between 
web APIs accepts a source API description and a target API 
description. For each operation in the source API 
description, it attempts to find a syntactically compatible 
operation in the target API. That is, for each source 
operation it attempts to find a target operation that accepts 
the same or fewer inputs, and produces the same or 
additional outputs. To define this notion formally, suppose 
IS and OS are the input and output types of the source API 
respectively. Similarly, assume that IT and OT are the input 
and output types of the target API. IS and IT are syntactically 
compatible, if IT contains the same or less attributes as IS. If 
IT includes any attributes that are not present in IS, they must 
be annotated as optional to maintain syntactic compatibility 
among the inputs. Similarly OS and OT are syntactically 
compatible, if OT contains the same or more attributes as 
OS. From an object-oriented programming perspective, IS 
and IT are syntactically compatible if IT is a more general 
type (super type) of IS. Similarly OS and OT are syntactically 
compatible if OS is a more general type of OT. 

When comparing complex types for syntactic matches, 
the algorithm may encounter attributes, which in turn are of 
complex types (due to the recursive nature of the type 
system).  In this case the algorithm must recursively 
compare the types of the child attributes. For example, 
assume a source operation, which has a complex input type 
CS that contains an attribute A of type TA. Now suppose 
there is a target operation, which has a complex input type 
CT that also contains an attribute A, but of type T`A. When 
comparing CS against CT, the algorithm must recursively 
compare the types TA and T`A for syntactic compatibility. 
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The algorithm iterates through the target API operations, 
looking for syntactic matches based on these guidelines. 
When it finds a matching target operation, the algorithm 
marks the operation, so that it is not matched with another 
source API operation. If the algorithm fails to locate a match 
for at least one source API operation, it returns FALSE to 
indicate syntactic incompatibility. It returns TRUE only if it 
can find matches for all source API operations. Algorithm 1 
further describes this analysis. The procedures input_match 
and output_match are recursive functions that take two 
types as the input, and check for their syntactic 
compatibility based on the rules described earlier. 

Based on the additional information available in the 
input API descriptions, we can make the syntactic analysis 
more sophisticated and accurate. For example, in addition to 
simply comparing the input/output data types, we can also 
compare the HTTP methods of operations, payload mime 
types and status codes returned by the APIs. This way, a 
source operation that consumes a JSON payload sent as a 
HTTP POST request and produces HTTP 201 responses, 
will only be matched against a target operation, which also 
consumes JSON payloads sent as HTTP POST requests and 
produces HTTP 201 responses in return. Most existing API 
description languages already capture this additional 
information regarding API operations, and hence they can 
easily be included in a syntactic similarity analysis. 

	  
4. SEMANTIC	  SIMILARITY	  OF	  WEB	  APIS	  

To define a metric for application porting effort from 
one API (source API) to another (target API) using the 
semantics of their operations, we require mechanisms 

• with which API developers specify the semantics 
of API operations 

• that automate the consumption and analysis of 
specified API semantics, and 

• that use the output from the analysis to construct a 
measure of porting effort for a pair of APIs 

To define these mechanisms and the overarching 
metric, we leverage and assemble extant research advances 
in a simple, yet new way that enables developers to estimate 
and rank the effort associated with porting their application 
to a different version of a web API or to an alternative 
implementation of an API. For simplicity of discussion, we 
assume that a pair of APIs under consideration has a single, 
syntactically matching operation.  That is, in what follows, 
we will examine the ability to quantify similarity between 
individual API operations.  As part of our future work we 
plan to extend the methodology to consider multiple 
operations in pairs of APIs. 
 
4.1 Specifying	  API	  Semantics	  

The first mechanism of our approach is a specification 
language that developers can use to document the semantics 
of the operations in their web APIs.  Our goal is to define a 
language that is simple, familiar, and intuitive to use that, at 

the same time, enables developers to specify the meaning of 
an API in a way that is amenable to efficient static analysis 
for semantic similarity. Toward this end, we leverage 
popular programming language syntax and tooling, and the 
well-researched field of axiomatic semantics. 

Our language is a strict subset of the Python 
programming language. This language choice is inspired by 
the widespread use of Python, Python's high level of 
abstraction and available tooling, and by previous works 
such as JML and Spec# that document program semantics 
(behavioral interface specifications) using programming 
language syntax. This latter research and that of others 
shows that using the syntax of familiar and popular 
programming languages to document API semantics 
facilitates programmer creation and editing of semantic 
specifications.   

We restrict the Python language in a number of ways to 
facilitate analysis and to simplify the specification process 
by API developers. Our language only accepts single-lined 
Python statements that are free of side effects. We disallow 
side effects to preclude the consideration of internal service 
state. We also disallow conditionals, loops, try-catch blocks, 
class definitions, and function definitions. 

Developers use this language to describe the behavior 
of API operations using axiomatic semantics -- 
preconditions that hold prior to invoking the operation and 
postconditions that hold after the operation executes.  We 
leverage axiomatic semantics as a first step toward 
describing and analyzing API operations in a way that 
reflects porting effort.  We plan to consider other successful 
approaches to describing the function and behavior of API 
operations as part of future work. 

Developers refer API request parameters and response 
parameters using the built-in logical variables input and 
output, respectively. For example, for an operation that 
takes two positive numbers and responds with their sum, the 
preconditions can be documented using the statements 
input.x > 0 and input.y > 0; the postconditions can be 
documented as output.sum == input.x + input.y.  These 
logical variables have been inspired by Hoare logic and 
separation logic to differentiate precondition values from 
postcondition values. The use of logical variables also 
enables expressing postconditions relative to preconditions, 
that is, postconditions can refer to the pre-state (request 
state) of an operation. 

We do not allow invoking arbitrary functions using our 
language. This includes the built-in functions of Python as 
well as any class-level functions that can be invoked as 
object methods. However, we do support a number of useful 
predefined, side-effect-free, functions (that we have 
defined) when invoked as built-in functions (as opposed to 
object methods).  We currently support the functions len, 
implies, forall, exists, matches, datebefore, and dateformat.  
We illustrate the use of a subset of our built-ins using 
simple examples below.  Our language and built-ins are 
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Data: Source API S with predicate sets Spre, Spost and 
Target API T with predicate sets Tpre, Tpost 
Result: Porting effort 
 
Mpre ! ∅, Mpost ! ∅ 
Peff1 ! 0, Peff2 ! 0 
Temp1 ! EmptyMap, Temp2 ! EmptyMap 
 
for <x,y> ∈ (Spre x Tpre) do 
   map_store(Temp1, <x,y>, Sim(<x,y>)) 
end 
while unmarked(Spre) and unmarked(Tpre) do 
   <<x,y>,Di> ! map_get_max(Temp1) 
   mark(Spre, x), mark(Tpre, y) 
   map_remove(Temp1, <x,y>) 
   Mpre ! Mpre ∪ {<x,y>} 
   Peff1 ! Peff1 + (1 – Di) 
end 
Peff1 ! Peff1 + |Tpre| - |Mpre| 

for <x,y> ∈ (Spost x Tpost) do 
   map_store(Temp2, <x,y>, Sim(<x,y>)) 
end 
while unmarked(Spost) and unmarked(Tpost) do 
   <<x,y>,Dj> ! map_get_max(Temp2) 
   mark(Spost, x), mark(Tpost, y) 
   map_remove(Temp2, <x,y>) 
   Mpost ! Mpost ∪ {<x,y>} 
   Peff2 ! Peff2 + (1 – Dj) 
end 
Peff2 ! Peff2 + |Spost| - |Mpost| 

return Peff1 + Peff2 

Algorithm 2: Porting effort evaluation algorithm 

easily extended if and when more expressive power is 
required. 

• Password input must be at least 6 characters long:  
o len(input.password) >= 6 

• All entries in the input list named scores must be 
within the range [0,100]: 

o forall(entry, input.scores, 0 <= entry and 
entry <= 100) 

• The format of the publishedDate output field is 
yyyy-MM-dd:  

o dateformat(output.publishedDate, `yyyy-
MM-dd') 

• If the country input field is set to US, the currency 
output field will be set to USD:  

o implies(input.country == `US', 
output.currency = `USD') 

 
Note that most of the above functions are not part of 

the standard Python programming language. We have added 
them in our API description language as native constructs. 
The following examples illustrate how some of the above 
functions can be used to document API preconditions and 
postconditions. As seen from the above examples, our 
Python-based syntax coupled with the built-in functions, can 
be used to document even the most complex of the API 
semantics. The language can be easily understood by human 
developers, and can be easily processed by programs using a 
simple language parser. New built-in functions can be 
introduced to extend the language, and enhance its 
expressive power. 

 
4.2 Comparing	  API	  Operations	  Pairwise	  

We next determine a similarity “score” by comparing 
the preconditions and postconditions of individual API 
operations. Throughout the remainder of this paper, we refer 
to the specified preconditions and postconditions of an API 
simply as semantic predicates. We represent semantic 
predicates as abstract syntax trees (ASTs). 

To compare a pair of matching API operations, we 
compute a tree similarity metric on their ASTs. To enable 
this, we employ a technique that is widely used for software 
plagiarism detection and source code evolution analysis, 
called the Dice coefficient.  The Dice coefficient has been 
shown in this past work to accurately extract the semantic 
similarity of two code fragments. Using the Dice 
coefficient, we treat each AST as a set of nodes over which 
we compute set similarity. Specifically, if P1 and P2 are two 
semantic predicates whose ASTs are T1 and T2 respectively, 
we compute the degree of similarity between the predicates 
P1 and P2 by computing the Dice coefficient on T1 and T2 as 
follows. 

 

 

	  

C is the number of nodes common to both T1 and T2. L 
is the number of nodes unique to T1 and R is the number of 
nodes unique to T2. This approach enables us to obtain a 
similarity value between 0 and 1 for any two given semantic 
predicates, where 0 indicates a total mismatch and 1 
indicates a perfect match. 

We also apply a trivial transformation on the semantic 
predicates when performing semantic comparison that 
breaks disjunctive and conjunctive predicates into their 
constituent predicates. This enables our mechanism to 
handle situations where the same set of predicates has been 
expressed in two APIs, but in slightly different formats. 

Notice that the amount of work necessary to port from 
one API to another is affected by the number of predicates 
in each.  In particular, the effort to port from a source API 
with fewer preconditions than the target API is more 
difficult than porting in the reverse direction.   

To illustrate this asymmetry, let M and N be two web 
APIs where N has more preconditions than M. It is more 
difficult to port from M to N than from N to M. More 
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preconditions imply that N's input set is more restricted than 
M. Therefore it cannot support all the inputs that M does.  
Hence some extra effort has to be put in by the developer to 
make sure that the application doesn't pass an unsupported 
input value to API N. However, by the same argument, 
porting an application from N to M should be easier.  Since 
M's input set is less restricted than N, the developer doesn't 
have to do any extra work in this case. 

Notice also that a similar asymmetry exists with 
respect to postconditions. If an application is to be ported 
from API S to API T and if T has more postconditions than 
S, then porting S to T is easier than the other way around. 
More postconditions help further restrict the output of API 
T. In other words, T may not produce an output that S 
doesn't. Therefore the application should be able to handle 
all the outputs generated by T, without having to make any 
code changes. Also, porting from API T to S becomes more 
difficult, since S might produce an output that T doesn't. 

 
4.3 Quantifying	  Porting	  Effort	  of	  Operations	  

Using the mechanism described in the previous section, 
we construct a measure of application porting effort using 
the semantic similarity of two APIs. Suppose S is a source 
API with the precondition set Spre and the postcondition set 
Spost. Suppose T is a target API with the precondition set Tpre 
and the postcondition set Tpost. To compute the porting 
effort from S to T, we first compare each member in Spre 
against each member in Tpre. That is, we calculate the 
similarity (Dice coefficient) of each predicate pair in Spre x 
Tpre. Then we choose the pairs with the highest similarity, 
and match each member in Spre to a member in Tpre. In other 
words, for each predicate x ∈ Spre we assign a predicate y ∈ 
Tpre such that the similarity of <x,y> is greater than the 
similarity of any <x,z> where z ∈ Tpre and y ≠ z. Matched 
pairs are put into a new set Mpre. We also make sure that no 
member in Spre or Tpre is matched to multiple counterparts. 
That is, whenever we insert a pair <x,y> into Mpre, we mark 
x in Spre and y in Tpre so that they cannot be considered for a 
match again. This way each member in Spre can be matched 
to a unique member in Tpre as long as |Spre| ≤ |Tpre|. But if 
|Spre| > |Tpre| some members of Spre will remain unmatched. 

We translate the predicate assignments into a porting 
effort score by computing (1 - Di) where Di is the similarity 
of the pair i ∈ Mpre. We add these values up to obtain an 
initial porting effort score Peff1. Then we consider the 
remaining unmatched (unmarked) predicates in Spre and Tpre. 
Recall that porting to an API with more preconditions is 
more difficult than in the reverse direction. To reflect this 
asymmetry in our methodology, we increase Peff1 by 1 for 
each unmatched predicate in Tpre. Unmatched predicates in 
Spre are ignored. Therefore, we have: 

 

	  

We perform a similar computation for postconditions 
using the sets Spost and Tpost. We compute the similarity of 
the members of Spost x Tpost and pick the pairs with the 
highest similarity to initialize a matching set Mpost. As a 
postcondition pair <x,y> inserted to Mpost, we mark x in Spost 
and y in Tpost to ensure that no predicate is matched multiple 
times. Then for each pair j ∈ Mpost we compute (1 - Dj) 
where Dj is the similarity of the pair j, and add these values 
up to obtain the porting effort score Peff2. We further 
penalize the porting effort by increasing Peff2 by 1 for each 
unmarked (unmatched) predicate in Spost. This adjustment 
accounts for the greater difficulty associated with porting 
from an API with more postconditions to one with fewer 
postconditions. 

	  

We calculate the final porting effort score by 
combining the values from previous computations. If 
Peff(S,T) is the porting effort from API S to API T, we have:  

 

	  

Algorithm 2 further illustrates our porting effort 
evaluation method. Temp1 and Temp2 are map data 
structures that support storing key-value pairs. The 
algorithm makes use of following named procedures: 

• map_store(map, key, value) - Stores the given key-
value pair in the map. 

• map_get_max(map) - Returns the key-value pair 
with the largest value in the map. 

• map_remove(map, key) - Removes the entry with 
the specified key from the map. 

• mark(set, element) - Marks the specified element in 
the set. 

• unmarked(set) - Returns TRUE if the set contains 
at least one unmarked element. Otherwise returns 
FALSE. 

• Sim(<x,y>) - Returns the similarity (Dice 
coefficient) of the predicate pair <x,y>. 

 
5. TWO-‐PHASE	  API	  SIMILARITY	  ANALYSIS	  

In this section we combine our syntactic analysis and 
semantic analysis into a single algorithm. The inputs to the 
algorithm are two web API descriptions (the source API and 
the target API), documented using our type system and the 
Python-based semantic description language. Algorithm 
outputs a sequence of matching (i.e. syntactically 
compatible) operation pairs and the porting effort value for 
each pair. If the algorithm fails to detect any syntactically 
compatible operation pairs between the source and target 
API, it simply returns an empty set. 
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Data: Source API S with operation set OPS and Target 
API T with operation set OPT 
Result: Compatible operation pairs with their porting 
effort 
 
Compatible, M ! syntactic_similarity(S,T) 
if Compatible then 
   R ! ∅ 
   for <s,t> ∈ M do 
      s` ! define_api(s), t` ! define_api(t) 
      effort ! semantic_similarity(s`,t`) 
      R ! R ∪ { <s,t,effort> } 
   end 
   return R 
end 
return ∅ 
 
Algorithm 3: Two-phased API similarity analysis 

The algorithm first performs syntactic similarity analysis 
on pairs of operations. Each pair consists of one operation 
from the source API, and one from the target API. We 
attempt to match each source API operation with a 
syntactically compatible target API operation. The 
algorithm returns the empty set and halts if it cannot find a 
matching target operation for at least one source API 
operation. The algorithm ensures that each target API 
operation is matched to at most one source API operation. 

If this initial phase of syntactic analysis succeeds in 
matching all source API operations with target API 
operations, the algorithm proceeds to the second phase. 
Here the algorithm performs a semantic analysis on each of 
the matched operation pairs. Final output of the algorithm is 
a list of matching operation pairs and their corresponding 
porting effort values. If the algorithm returns the empty set 
(in first phase), it implies that a straightforward port 
between the given source and target APIs is not possible 
(i.e. at least one of the required operations are not supported 
by the target API). If the algorithm returns a list of matching 
operations, the associated porting effort values can be used 
to estimate the difficultly of the port in practice. 

Algorithm 3 illustrates the outline of our two-phase API 
similarity analysis method. The procedures 
“syntactic_similarity” and “semantic_similarity” in the 
listing are functions that invoke algorithm 1 and algorithm 2 
respectively. The procedure “define_api” is a helper method 
that defines a temporary API specification from the 
operation provided as input. This is there simply because we 
have defined algorithm 2 to accept two complete API 
specifications as the input. In a real-world implementation 
this can be simplified or even avoided if necessary. 

 
6. PROTOTYPE	  IMPLEMENTATION	  

We implement the proposed syntactic similarity analysis 
and the semantic similarity analysis as a command-line tool. 
This tool is programmed in Python and in total consists of 
around 750 lines of code. It takes as input two API 
descriptions documented using an extended form of 
Swagger. Swagger is a popular JSON-based description 
language that syntactically describes REST APIs. It uses a 
type system very similar to the one described in section 3, 
and also captures individual operation names, HTTP 
methods, media types of message payloads and error codes. 
We extend the base Swagger description language by 
introducing two new JSON attributes to the operation 
description. These attributes are named “requires” and 
“ensures” (inspired by JML). Each attribute points to a list 
of semantic predicates written using our Python-based 
semantic description language. The “requires” attribute 
holds the preconditions of the operation, and the “ensures” 
attribute holds the postconditions. This extension results in a 
more complete API description that consists of both type 
information (for syntactic similarity checking) and 
axiomatic semantics (for semantic similarity checking). 

Our decision to base our prototype on the Swagger API 
description language has been motivated by several reasons. 
These include simplicity, openness of the standard, 
widespread adoption in the industry, existence of many 
tools and libraries to process Swagger descriptions and 
existence of tools to auto-generate Swagger descriptions 
from web service codes. 

We have kept our prototype very simple and lightweight. 
In its present state, it does not make use of any third party 
libraries except for the standard Python modules. Swagger 
specifications are read from the file system and parsed as 
JSON strings using Python’s native JSON support. 
Semantic predicates are parsed into their AST 
representations using Python’s built-in “ast” module. This 
greatly simplifies the implementation, and prevents us from 
having to write our own grammar rules or parser to process 
semantic predicates. 
 
6.1 Auto-‐generating	  API	  Specifications	  

In this section we briefly discuss the issue of auto-
generating API descriptions with type information and 
semantic predicates, so they can be used for the type of 
analyses described in our work. We believe that the ability 
to auto-generate details API specifications is crucial for this 
type of automated analyses and tools to be widely adopted 
and deployed in the industry. Handcrafting specifications 
for complex web APIs takes time, can be error prone and 
can result in various software maintenance complexities in 
the long run. 

As a part of our research, we have implemented tools 
that can auto-generate Swagger API descriptions from the 
web services coded in Java (JAX-RS) and Python. The auto-
generated specifications list the operations of the APIs, 
along with their HTTP methods, status codes, mime types 
and input/output data types. Swagger uses a type system 
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Table I. Syntactic similarity analysis results. 

Scenario Expected Result Actual Result Generated Description 
Adding a new optional input parameter TRUE TRUE None 
Adding a new required input parameter FALSE FALSE Required input parameter 

introduced in new API 
Removing an input parameter TRUE TRUE None 
Renaming a required input parameter FALSE FALSE Required input parameter 

introduced in new API 
Renaming an optional input parameter TRUE TRUE None 
Adding a new optional output parameter TRUE TRUE None 
Adding a new required output parameter TRUE TRUE None 
Removing an output parameter FALSE FALSE No match found for output field 
Renaming a required output parameter FALSE FALSE No match found for output field 
Renaming an optional output parameter FALSE FALSE No match found for output field 
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Figure 1: Average execution time of the syntactic analysis 

very similar to the one discussed in section 3, which is 
serialized into JSON Schema. In case of Java web services, 
we have implemented a Maven plug-in that gets activated at 
the compile-time of the source code, which performs static 
analysis on the code to generate the necessary Swagger API 
descriptions. It extracts the necessary metadata out of 
method signatures and JAX-RS annotations and Javadoc 
comments present in the code. In case of Python (which is 
not a compiled language), we provide a separate command-
line tool that needs to be invoked manually to parse the 
source and generate the API specifications. This tool also 
extracts the required metadata from Python method 
signatures, decorators and docstrings available in the code. 

Our tools currently do not facilitate generating API 
specifications with semantic information. We have left his 
feature for future work. We intend to utilize the techniques 
popularized by frameworks such as JML and PyContracts to 
extract the required axiomatic semantic predicates from 
source code into the API specifications. That is, the 
developers will be required to document their source code 
with the proper axiomatic semantics (using comments and 
annotations), and the API specification generators will pick 
up this information from the code. The design by contract 
research corpus already describes mechanisms that can be 
used to automatically check and enforce these semantic 
constraints at run-time, which will ensure that the web 
service implementations never stray away from their 
documented semantic contracts.	  
7. EXPERIMENTAL	  RESULTS	  

We have developed our prototype so as to be able to 
separately evaluate each phase of the analysis. We first 
consider syntactic similarity analysis and then evaluate 
semantic analysis in detail. For the latter, we consider 
randomly generated API specifications to study various 
characteristics of our API porting effort metric.  We then 
consider real-world APIs and developer-perceived porting 
effort, and evaluate the overhead of our approach. 

 

7.1	  Syntactic	  Similarity	  Results 
To evaluate the effectiveness of our syntactic similarity 

analysis, we take the Swagger specification of an existing 
test API, and create multiple modified versions of it. Each 
modified version demonstrates a possible way the input and 
output data types of an API operation can change in real-
world API deployments. Then we run our syntactic 
similarity analysis algorithm on the original API 
specification and each of its modified versions, and record 
the output of the algorithm. In addition to the simple 
TRUE/FALSE output of the algorithm, our prototype 
implementation also gives a textual description of the 
changes it detects between compared API specifications. 
We record these results in Table I.  

Our experimental results show that the proposed 
syntactic similarity analysis is capable of detecting all 
possible ways data types of an API operation can change   
(i.e. addition, removal and modification of type attributes). 
Further, our prototype is capable of pinpointing the exact 
differences between input/output types of APIs, when there 
are incompatibilities among them. 
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Figure 3: Porting effort CDFs for real-world APIs 
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Figure 2: Porting effort CDFs for randomly generated APIs 

 
Next, we evaluate the performance of syntactic 

analysis. We handcraft a series of API specifications, with 
different attribute (parameter) counts per input/output type, 
and different levels of recursion  (nesting of types within a 
type). We compare each specification against itself using 
our algorithm 1000 times, and calculate the average 
execution time of a single run of the algorithm. Figure 1 
depicts the results of this experiment. 

The data shows that our syntactic similarity analysis 
scales linearly with the number of attributes available in 
data types. Also note that the y-axis of Figure 1 is in 
milliseconds, which implies negligibly small overhead (< 
5ms) even in the worst case under consideration (50 
attributes per type, with 3 levels of nesting). 

  
7.2	  Randomly	  Generated	  APIs	  

In our next experiment, we randomly generate a 
population of 100 API specifications. Each specification has 
a single operation. We semantically compare each API 
against all others in the population and compute the porting 
effort between them. We repeat this experiment using 
different numbers of semantic predicates. We randomly 
generate the API specifications with 10, 20 and 50 semantic 
predicates.  Our goal with this experiment is to understand 
how our measure of porting effort changes under these 
scenarios (e.g. to determine the sensitivity of the mechanism 
to supplied parameters). 

Figure 2 shows the cumulative distribution functions 
(CDFs) of the computed porting effort as a function of the 
number of predicates per single API operation. A porting 
effort value of 0 indicates no porting effort. The data shows 
that the porting effort between API operations increases 
with the number of semantic predicates. For example, the 
maximum porting effort observed in APIs with 10 semantic 
predicates is 17.4. This goes up to 30.1 when the number of 
predicates is increased to 20. It further increases up to 44.9 
when the semantic predicates count is set to 50. Also, when 
considering the CDFs of the porting effort, 50% of the API 

operation pairs have 4.3 or less porting effort in the 
population with 10 semantic predicates. In the population 
with 20 semantic predicates, 50% of the APIs have 7.1 or 
less porting effort. In the population with 50 semantic 
predicates, this limit further increases up to 12.9. This is 
inline with our experience in which, as the number of 
semantic predicates increases, the API consumer is forced to 
adhere to additional restrictions. As such, when porting 
among different web API operations, the developer has to 
take more constraints into account and must write more 
code to reconcile the differences. This results in increased 
porting effort. Our experimental results suggest that our 
porting effort metric captures this phenomenon. 

It is also interesting to note that our porting effort values 
are not bounded by any upper limit. The porting effort could 
be arbitrarily large depending on the number and the 
complexity of the semantic predicates. We believe that this 
property of the metric reflects current practice. That is, it is 
always possible to find or create two new APIs E and F, 
such that the effort it takes to port an application from E to 
F is greater than any previously known upper bound. Our 
porting effort evaluation mechanism captures this property. 
 
7.3	  Publicly	  Available,	  Real-‐World	  APIs 

We next investigate the efficacy of our approach using 
popular, publicly available web APIs. We list these APIs 
below.  To evaluate our porting effort metric, we have 
augmented the APIs with semantic specifications manually.  
To enable this, we carefully analyze the API documentation 
and examples related to each of these web APIs. 
Specifically, we identify an important operation from each 
API set that was present across the set and specify its 
pre/postconditions using our specification language. Thus, 
these results pertain the similarity between an individual 
API operation that is common to all APIs in a set (either 
social media, airline services, or digital media). 

• Social media login APIs: Facebook, Google, 
LlinkedIn, Twitter, Yahoo, Hi5, Amazon 
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Figure 4: Percentage variance of porting effort 
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Figure 5: Percentage accuracy of the classification 

• Airline itinerary search APIs: American Airlines, 
British Airways, Cathay Pacific, Delta Airlines, 
Emirates, Etihad, Singapore Airlines, United 
Airlines, Virgin America 

• Digital media video search APIs: Youtube, iTunes, 
MovieDB, RottenTomatoes, Vimeo 

We then compute the porting effort among each pair of 
APIs within each of the above three categories. We present 
the CDFs of the results in Figure 3. 

The data shows that a fairly large proportion of the API 
pairs have a low porting effort. For instance, in all three 
populations (social media, airlines and video search), 50% 
of the pairs have a porting effort of 3.3 or less, a 
characteristic not present in the data obtained from the 
randomly generated APIs. This is because, unlike in the 
randomly generated populations where most APIs are 
completely unrelated to each other, in real world API 
populations most APIs can and do have commonalities. For 
instance, most social media login APIs have similar 
constraints on username and password. Most airline APIs 
have similar requirements with respect to specifying 
departure and arrival cities, travel dates and the number of 
passengers. Most video search APIs also exhibits similar 
constraints, in that most APIs at least accept simple text 
queries to perform keyword-based search. These similarities 
simplify application porting. 

The CDFs of the social media APIs and the airline APIs 
follow relatively similar trends.  However, the CDF of  the 
video search APIs deviates from the other two and reaches a 
maximum porting effort value close to 35. A closer look at 
the API specifications showed that social media APIs and 
the airline APIs are similar in terms of their average 
semantic predicate count (8.1 and 9.3 respectively). For the 
video search APIs, the average predicate count is as high as 
15.6 thus resulting in an increased porting effort among 
them. Also, some of the video-search APIs have a large 
number of semantic predicates compared to the others. For 
instance, Youtube search API has 28 semantic predicates, 
and the iTunes search API has 30 semantic predicates. 
Therefore ports that involve these APIs tend to be much 
more complicated than the others. 
 
7.4	  Categorizing	  API	  Porting	  Difficulty 

Given this efficacy (particularly for the real-world 
APIs), we can determine categories of difficulty.  That is, 
we can use the methodology to “cluster” API ports into 
groups that can be ranked in terms of difficulty (e.g. is a 
port “easy” or “hard”?) 

To investigate this hypothesis we use k-means clustering 
to classify the results into two groups (i.e. k = 2).  Figure 4 
shows, for each sample set, the ratio of the variance 
explained by the categorization to the total variance in the 
set.  Typically, this analysis shows an “elbow” in the curve 
corresponding to the point where further categorization adds 
little explanatory power.  In our study, that point of 
diminishing returns appears at k = 2. 

Thus, for these API operations, it appears that our 
methodology should be able to divide pairwise porting 
effort into two categories: “easy” and “difficult”. We then 
asked two of our lab members (lets call them D1 and D2) 
conversant with web services but not otherwise associated 
with this project to categorize the porting difficulty of a 
subset of the porting possibilities in each set as either “easy” 
or “difficult”. 

We gave these developers three sample sets, each 
consisting of 5 API specifications, randomly chosen from 
the above three categories (social media, airlines and video 
search). We then asked each developer to analyze the API 
specifications pairwise, and classify all possible pairs into 
two groups -- easy and difficult -- depending on the 
potential complexity of porting an application from one API 
to another. We also computed the porting effort between 
these web APIs using our own prototype, and used k-means 
clustering to classify the results into two groups (i.e. k = 2). 

Figure 5 shows the percentage accuracy of the 
classifications computed using our formal mechanism with 
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Figure 6: Average execution time of the semantic analysis 

respect to the classifications provided by developers D1 and 
D2 respectively. 

We compute the percentage accuracy as the ratio of the 
number of entries classified as the same (i.e. agreement 
between the developer and the methodology) to the total 
sample size. In terms of a simple categorization, the 
agreement is good.  Indeed, developer D2 and the 
methodology obtained the same classification (100% 
accuracy) for the social media API operation. 
 
7.5	  Overhead	  of	  Semantic	  Analysis	  
Finally, we the time overhead associated with computing 
porting effort using our mechanism. We employ our 
randomly generated set of 100 API specifications and 
compute the porting effort between each pair of APIs. We 
measure the time elapsed for all steps and then compute the 
average time per API pair. We repeat the experiment, 
varying the total number of semantic predicates in each API 
specification. We report the average times that we observe 
in these experiments in Figure 6. 

For web APIs with 10 semantic predicates, our 
evaluation method takes less than 10ms. This increases up 
to 200ms when the predicate count is increased to 50. This 
increase in execution time is due to the pairwise AST 
comparison operations performed by our algorithm. That is, 
when computing the porting effort between two APIs, our 
prototype compares each precondition of the source API 
against each precondition of the target API. In the same 
fashion, our prototype compares each postcondition of the 
source API against each postcondition of the target API. 
Therefore the number of AST comparisons performed is 
polynomial in the number of semantic predicates. Hence the 
average execution time of our algorithm increases 
polynomially with the increase in semantic predicates. 
However, for web APIs with 10 semantic predicates, the 
average execution time is below 10ms and for web APIs 
with 20 semantic predicates, the average execution time is 
well below 50ms. Since most of the real world web APIs 
that we have studied to date have a small number of 

predicates (the max was 30), our approach is not likely to 
impose a significant time overhead on the development 
process for applications. If required, the algorithm can be 
easily parallelized by running the pairwise AST 
comparisons in parallel to reduce the overhead further. 

Compared to the execution time of the syntactic 
similarity analysis, however, the semantic similarity 
analysis takes much longer to complete. This indicates that 
in our two-phased API similarity analysis algorithm, the 
semantic similarity analysis component is the more 
expensive and critical element in terms of time complexity. 

Overall, our porting effort evaluation method produces 
useful results with a high level of accuracy. The method is 
efficient, and can be easily applied to real world web APIs. 
The Python-based syntax simplifies documentation and 
publication of API semantics (relative to semantic 
ontologies, state machines, and formal logic) by API 
providers. If an API provider fails to publish API semantics 
in our language, API consumers (developers) can easily 
create API specifications on their own by converting the 
semantics of API operations described in the API 
documentation into Python code. 
 
8. RELATED	  WORK	  

This paper is an extension of our initial investigations 
into semantic analysis of web APIs.  This work, in general, 
builds upon and extends research from a number of other 
areas in computer science. These areas include 
programming language and web service semantics, analysis 
and verification. 

Static type checking techniques have been in 
widespread use for decades and make up one of the corner 
stones of programming languages research. We employ 
some very traditional and basic type checking mechanisms 
to implement our syntactic similarity analysis. The proposed 
input/output type comparison rules have strong roots in 
existing type checking techniques and object-oriented 
programming. Our type system has been inspired by a 
number of other type systems used in cross-language RPC 
frameworks (e.g. Apache Thrift, Google Protocol Buffers) 
and syntactic API description languages (e.g. Swagger, 
JSON Schema, WADL). Like the type systems of cross-
language RPC systems, our type system is also not tied to 
any specific programming language. It facilitates specifying 
optional and required data fields, much like how most API 
description languages support annotating data fields as 
either required or optional.  

Our approach of using axiomatic semantics to describe 
web APIs is rooted in the work of Floyd and Hoare. Floyd 
modeled computer programs as digraphs where vertices 
represent program statements and edges represent control 
flow. Predicates representing correctness conditions are 
attached to the edges. Hoare introduced the notion of Hoare 
triples and constructed a formalism for reasoning about 
program correctness using them. A Hoare triple is a logical 
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construct of the form P{C}Q where C is a command (an 
operation) in a program, P is the set of preconditions of C 
and Q is the set of postconditions of C. We adapted this 
formalism into our work where we reason about web 
services by describing their operations along with the 
respective preconditions and postconditions. Hoare's 
seminal work on using axiomatic semantics to reason about 
program correctness excludes side effects and arbitrary 
procedure calls. In this work, we follow the same approach 
for semantic predicate description language to facilitate low 
complexity and thus fast evaluation of API porting effort. 

Several researchers have been successful in using 
axiomatic semantics to reason about the correctness and 
behavior of software constructs. Hoare himself, along with 
Wirth showed how axiomatic semantics can be used to 
describe Pascal programs. Fikes and McGuiness used 
axiomatic semantics to describe RDF data models. Gegg-
Harrison et al introduced ProVIDE, a software development 
tool that allows the user to establish program correctness via 
specifying postconditions and then generating the 
corresponding preconditions. Black used axiomatic 
semantics to verify the behavior of a secure web server. 

Our guidelines for comparing web API semantics are 
loosely based on Hoare's rule of consequence. The rule of 
consequence states that if P{C}Q and P'{C'}Q' are two 
Hoare triples such that P " P' and Q' " Q, then the 
command C' can be used in any context where the command 
C can be used. This is because C' has more permissive 
preconditions and more restrictive postconditions compared 
to C. We follow a similar rule when comparing web APIs 
with unequal number of preconditions or postconditions. 
Naumann and Olderog have  made similar arguments. 

The use of programming language syntax for 
expressing program semantics and contracts is a widely 
used concept. JML uses two primary annotations (requires 
and ensures) to document the preconditions and 
postconditions of Java methods using Java syntax. Spec# 
provides similar functionality for the C# language. SPARK 
language has built-in contract documentation features, 
where contracts are encoded in the source code as Ada 
comments. These technologies use the documented 
semantics or contracts mostly for verification purposes. That 
is, they verify whether the program adheres to the given 
contract at the runtime. We use the documented semantics at 
the development time to reason about web service semantics 
and porting effort by applying static analysis methods. 

The use of AST representations to compare programs 
and reason about them is also well researched. Our approach 
is heavily based on the work of Baxter et al, where they 
used AST comparison methods for detecting program 
clones. Baxter et al introduced the notion of syntactic 
similarity (based on the Dice coefficient), as opposed to 
exact matches, as a more practical means of finding 
program segments with similar functionality and behavior. 
Cui et al showed how to use AST comparison methods for 
source code plagiarism detection. They showed that AST 

comparison based methods are capable of finding a wide 
range of similarities between different programs. Hashimoto 
and Mori augmented AST comparison methods with 
heuristics-driven techniques so that they can be used to 
efficiently analyze the differences between programs written 
in a wide range of programming languages. Neamtiu et al 
used AST comparison methods to track down and analyze 
how a program code base has evolved over time. 

Bianchini et al introduced the notion of semantics-
enabled web API selection patterns. One of the selection 
patterns they discuss is the substitution pattern, which aims 
at finding a web API that can be used to substitute another 
API (i.e. porting). They presented a formalism to model and 
quantify this selection pattern based on semantic ontologies. 
However, constructing comprehensive semantic ontologies 
requires a lot of time and manual effort, and therefore such 
techniques are difficult to apply in practice. Also they 
mainly focus on semantically annotating the input/output 
data elements of web APIs, whereas we look at the 
functional and behavioral traits of the web APIs. 

There is a large body of work that uses techniques like 
process models, state machine models and logic to reason 
about web service behavior. However these formalisms are 
aimed at addressing the issues such as discovery, 
monitoring and verification. Our work deviates from these 
formal methods, in the sense we attempt to reason about 
developer experience of different web services, in the sense 
how much effort a developer has to put in to port an 
application from one web API to another. 

 
9. CONCLUSIONS	  

Increasingly, web, mobile, and cloud developers 
integrate publicly available web services, exposed via well-
defined APIs, into their Internet accessible applications.  
Doing so simplifies and expedites software development, 
testing, deployment, and management of these applications.  
Despite these benefits that arise from decoupling of APIs 
from the implementations they serve, the web service model 
has also introduced a key challenge for developers: API 
churn -- constant API evolution (versioning) and emergence 
of alternative, competitive implementations for the same 
API.  As a result, it is critical that developers be able to 
efficiently analyze the similarity between APIs and reason 
about the work required to migrate their applications from 
one API (or API version) to another. 

In this paper, we investigate a new methodology for 
automatically analyzing API similarity and quantifying 
application porting effort.  Our approach defines a basic 
recursive type system and a simple language based on 
Python with which API developers document the syntactic 
and semantic aspects of API operations. We present 
algorithms that consume and analyze API features, to 
automatically determine whether two given APIs are 
syntactically compatible, and if so, how difficult it is to port 
an application among them. We evaluate a prototype of this 
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approach using randomly generated APIs to measure the 
sensitivity to the parameters we employ, and using 
competitive, publicly available APIs to determine its 
efficacy on real-world APIs. Finally, we show that 
computation of our porting effort metric introduces minimal 
overhead, making it sufficiently practical to include in a 
developer's tool chain. 
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