Using JavaNws to Compare C and Java TCP-Socket Performance

Chandra Krintz Rich Wolski
Department of Computer Science and Engineering Computer Science Department
University of California, San Diego University of Tennessee, Knoxville
ckrintz@cs.ucsd.edu rich@cs.utk.edu
Abstract

As research and implementation continue to facilitate figlformance computing in Java, appli-
cations can benefit from resource management and predtoids In this work, we present such
a tool for network round trip time and bandwidth between a’'siskesktop and any machine run-
ning a web servet. JavaNws is a Java implementation and extension of a powseriset of the
Network Weather Service (NWS), a performance predictiatkibthat dynamically characterizes
and forecasts the performance available to an applicatifmwever, due to the Java language im-
plementation and functionality (portability, securityck it is unclear whether a Java program is
able to measure and predict the network performance expedeby C-applications with the same
accuracy as an equivalent C program. We provide a quamétatjiuivalence study of the Java and
C TCP-socket interface and show that the data collected doydkaNws is as predictable as, that
collected by the NWS (using C).

1 Introduction

The Internet today provides access to distributed reseuhreughout the world via many interconnected,
non-dedicated networks. Available network performanag(icy and bandwidth) fluctuates over short time-
scales, however, making it difficult for a user to make infechalecisions about whether or not it is practical
to use the network (for distributed execution or downloadrgy given time.

Users have access to a variety of network performance nrogjtdools (SNMP [2], netperf [13],
pathchar [12], the Uniping command, etc. as well as a raft of others currently listet yi0] and [11]).
All of these tools provide an estimate péstperformance conditions. A user wishing to decide between
two equivalent download sites must assume that the conditimat have been observed will persist until the
download is complete. That is, the user uses the currenttamlas apredictionof what the conditions
will be a short time into the future. However, statisticahlysis of network performance data indicates that
the last value observed is rarely the best predictor of éut@twork performance [19]. Furthermore, most of
these tools use network protocols different from those bigeakser applications or only determine network
utilization in terms of aggregate packet traffic at intermatalgateway nodes. It is difficult to translate these
readings into the performance a user will experience dugimgmote invocation or a network download.
To make an effective decision about network use, usersnegpplication level predictions of the network
performance that the application or download will expeséen

To solve these problems, we have previously developed thedde Weather Service [20, 19, 17]
(NWS) at the University of Tennessee, Knoxville. The NWS idistributed service that provides users

with measurements of current network performance and atewredictions of short-term future perfor-
mance deliverable to an application or download. The NWSpmrants operate with no special privileges
and use TCP/IP — a protocol commonly used in user applicatod browser downloads — to measure
network availability. The measurements are treated asderies and a set of adaptive statistical forecasting
models are applied to each to make short-term predictioasaifable network performance.

The NWS, however, requires hard collaboration betweengss®s. A uséror administrator must install
the package on any machine that is to be monitored. In amktteomputing environment, users expect to
access all services through their web browsers. Rathemiteiding a pre-compiled binary for download,
we have developed an Java applet version of the NWS morgtarid forecasting facilities. When the applet
is invoked, it periodically measures the performance betwibe browsers into which it is loaded, and the
machine running the web server that launched it. If the appiastalled at replicated server sites, the user
can use the performance forecasts it generates to selauotteeffective server dynamically.

In this paper, we describe an implementation of NWS funétiion for the Internet: JavaNws We
selected the Java [16, 6] language for its applet executmareiras well as for its wide spread availability and
use as an Internet programming language. The applet eseautidel, in which programs are downloaded
to a user’s desktop then executed locally, enables ediatwist of an interactive session between the desktop
and the remote server machine. During such a session, thdldavmeasures network performance and
displays it graphically on the user’s desktop. The appletation model also enables the user to circumvent
the need to explicitly install and maintain an NWS networknitaring process. An arbitrary user can simply
click on a link at a web server and visualize the current amdré) predicted performance of the network
between the desktop and the web server. JavaNws is the ficsiltto visualize NWS data dynamically and
continuously.

However, the common Java execution environment enabléahjildy, security, and other functionality,
many times at the cost of performance. To be accepted andruBgdrnet computing settings, the JavaNws
must report measurements of network performance that isriexmed by applications that depend on the
C language TCP-socket interface. For example, file dowsle#al HTTP and distributed applications are
likely to use services built using C [9, 4, 5]. With this worke empirically compare C and Java socket
performance and show that despite any overhead imposecehiatta language design, C and Java TCP-
socket implementations perform equivalently. We use theNwas infrastructure to collect the data for this
evaluation.

In the next section we describe the implementation of thaNess. Section 3 details the experimental
methodology we used in this study. In Section 4, we analyva dad C performance results based on long-
running performance traces. Because statistical congpadan be difficult for non-Normal data, we also
analyze the predictability of each methodology in Sectionrbthe final sections we detail the our future
directions and conclude (Sections 6 and 7 respectively).

2 JavaNws Implementation

The JavaNws is a Java implementation of the NWS network meamnt and forecasting subsystems (see
[20] and [19] for a complete description of NWS functional#ind forecasting techniques). The JavaNws
provides a graphical display of the performance data twallsers to visualize the network performance
(actual and predicted) between the server and their degki@al-time. For example, a user may decide to
download a piece of software from an arbitrary site on theltNdfide Web (WWW). In order to determine

if the download time is feasible, he or she can first click oraeaBlws link provided by the site to view
the current as well as future, predicted network conditioirs addition, the download site can provide

2All NWS services can run with standard user privileges sous®r can install the software.

links to JavaNws at its mirrored sites allowing the user t® i predicted network performance to make
informed decisions about the download times from each dReevious work with the NWS and Java-
based applications indicates that basing transfer desisia NWS forecast data can dramatically improve
execution performance [3, 18].

The JavaNws consists of two parts: The applet that execotfeaiser’s desktop and the server program
(called the Echo Server) located at the machine from whiehaftiplet is downloaded. When a user clicks
on a JavaNws link, a Common Gateway Interface (CGI) progsaexécuted that invokes the Echo Server
in the background and then initiates transfer of the applé¢ihé user's desktop for execution. A complete
description of the JavaNws design can be found in [14]. W& pexvide an overview of the JavaNws
functionality.

2.1 The JavaNws Applet

The JavaNws applet establishes an interactive sessiotthgiticho Server during which a series of commu-
nicationprobesare conducted. With each probe, measurements are takearaf tgp time and bandwidth
(additional detail is provided in Section 2.1.1). Theseegikpental results are then used by a forecasting
module within the applet to make predictions of the netwogkigrmance that will occur at the next time
step. This module is further described in the following ®ect The prediction and the measurement data
are then visually displayed for the user as continuoushatgutigraphs. Figure 1 provides a view of these
graphs.

2.1.1 JavaNws Network Performance Measurements

To measure round trip time, a two-byte packet is exchangéddesm the JavaNws applet and the Echo
Server during a session. To determine the extent to whiciN#igge algorithm? effects the transfer time,
two tests are performed; one with the Nagle effect off andwitie it on. The Nagle algorithm is used by
TCP to improve network performance when many small packetb@ing sent. With the Nagle algorithm,
TCP waits to send many small packets at once; if no other pmeke sent, TCP eventually forwards the
small packet. Round trip time with the Nagle effect is repdrto the user (via the display). For the results
in this paper, we report data with and without the Nagle ¢ffeshow differences between the Java and C
versions.

To measure bandwidth, the applet times a “long” transfeK&4&y default, although JavaNws allows
the user to set the probe duration) and calculates the iregbiandwidth. This timed exchange consists of
a large packet from the applet to the Echo Server and a 2 bgtep&om the Echo Server to the applet
acknowledging the completion of the probe. In our resulttise, both the C and Java versions measure
bandwidth with a 64KB transfer.

2.1.2 JavaNws Forecasting Module

To make predictions of near-future performance we impldetethe NWS forecasters in Java. A detailed
description of the these forecasters can be found in [13hdmt, this module consists of a set of independent
forecasting algorithms [7, 1, 8], each of which producesestep-ahead forecast from a given time series.
At each time step, the measurement data taken by the appletisared to the forecast produced by each
forecasting algorithm for that time step. The differencésMeen each forecast and the measurement it is
forecasting is théorecast error The mean square forecasting error (MSE) associated watinfeaecasting

3We will refer to the combination of the Nagle small-packedidance algorithm and the delayed acknowledgement hgori
(which avoids silly-window syndrome) together as the “Naglgorithm” throughout this paper. Although, strictly aging they
are separate optimizations, they both manifest themsalvgstential delays in the end-to-end observed performance

—

TCP Reund Trip Time: Predicted and Actual: Each peint is a 5 second interval

. Round Trip Time: Predicted and Actual Mean Abselute Errer 033 msecs

Standard Deviaticn: 0,51
233 Prediction:
1.00 msecs For Time: 18:55:04

1.67

Last Measurement:

10 1.00 msecs &t Time: 18:54:539

Tar localhost

|:|.33w w u Frorm: localhost

- Toggle Same/Different Graphs

-1.0

Time (Rightmost iz MNOW)

® Predicted & Aitual

—

TCP Bandwidth: Predicted and actual: Each point is a5 second interyval
Bandwidth: Predicted and Actual Mean Absolute Errer; 12,73 Mb/sec

175.26 "
Standard Deviation: 22.50

Prediction:

160.53 TI
\\ v\ \I\ 131.07 Mbisec For Time: 18:56:04
1455

Last Measurement:

104,85 Mbfcec At Time: 13:55:59

131.07
Ton lecalhost

116.34 From: localhost
(01 EA w ! L Teggle Same/Different Graphs

8.5 i

Time (Rightmost is NOW)

@ Predicted @ Aptual

Figure 1: A view of the JavaNws round trip time (TOP) and baiatlv(BOTTOM) graphs in action. Dark
(blue) points are predicted values and light (pink) poimesthe actual measurements. The right-most point
in each graph is the value predicted to occur in the nexti@ytime step. Where there appears to be only a
single point at a given time step, the predicted value isdiheesas the actual measurement (the measurement
was correctly predicted).

algorithm is accumulated for every measurement. To makagiesprediction for the next time step, the
algorithm having the smallest MSE is chosen. It is this naastdrate-up-until-now forecast that is reported
to the user as the JavaNws prediction. Note that this fotiagamodule keeps a separate time series for
round-trip time, Nagle-impeded round-trip-time, and baiutth.

2.2 \Validating The JavaNws

In the remainder of this paper, we validate the JavaNws byirgrajty comparing C and Java TCP-socket
interfaces. That is, we show that the JavaNws measuremeémiradiction of network performance between
the desktop and a remote server is as accurate as its C quanbtaind that any overhead imposed by Java
programming language does not effect the Java TCP-socKetmance. Our results in the following sec-
tions indicate that JavaNws is able to measure and predictetwork performance available for download
and distributed execution by applications written using @ TCP-socket interface. We use the JavaNws
infrastructure to collect the necessary data for this saglgtescribed in the following section.

3 Experimental Methodology

To empirically compare the C and Java TCP-socket interfacegxtended the JavaNws to use the Java Na-
tive Interface (INI) to invoke a native C language methodhémee it takes a measurement. Once a transfer
has been completed by the Java version (the Java versionireeesits have been taken and the socket used
in the exchange has been torn down), the applet calls a Cenadthod that repeats the communication
protocol to collect the C version measuremehtsAll experiments were performed at approximately 12
second intervals over a 24 hour period on weekdays betwa@usanachine pairs.

We chose pairs of machines based on the type of network amteecting them to observe Java and
C performance under varying conditions. Data for four suoks| representative of the overall set, is
included in this paper. Table 1 gives the location of machifte each pair of hosts, the predominant
network technology separating the two, and the versionwaf iFaerpreter that was used to execute JavaNws
to generate the results presented in this paper.

The locations include San Francisco (MetaExchange.cdme),University of California, San Diego
(UCSD), the University of Tennessee, Knoxville (UTK), ark tUniversity of North Carolina (UNC).
UCSD, UNC, and UTK are vBNS sites. The vBNS is an experimemgalscontinental ATM-OC3 net-
work sponsored by NSF that can be used for large-scale aretaveh network studies. It is characterized
by high-bandwidths and relatively high round-trip timeduced by large geographic distance. The “stan-
dard” Internet connectivity we observed in this study is-gedicated common-carrier. We also show the
types of machines and operating systems we used in Tabler®a®s-@nd performance can be influenced
by the type of software and hardware at the end-points.

Graphs of the 24-hour, raw data measurements taken by thes@@weand the Java version for each
pair of hosts are shown in Figures 2 (bandwidth), 3 (rourmtinne) and 4 (round trip time with the Nagle
effect). The left graph in each row is the data collected fy@hversion; the right collected by the Java
version.

“We also performed the measurements in the opposite ordeC(trersion first and then the Java version) and found similar
results.

Table 1: Locations of Machines Used in Experiments.

a-g | ash (San Francisco) to

gibson (UTK) via the Internet, Java v1.1.3
c-d | conundrum (UCSD) to

dsi (UTK) via the vBNS, Java v1.1.3

f-n | fender (UTK)

to ncni (UNC) via the vBNS, Java v1.1.7
p-k | pacers (UTK)

to kongo (UCSD) via the vBNS, Java v1.1.7

Table 2: Types of Machines Used in Experiments.

ash Sparc Ultra |, Solaris 5.6,

167Mhz processor, 256 memory
conundrum| Sparc Station 5, Solaris 5.6,

110Mhz processor, 64MB memory
dsi RS6000, AlX 4.3,

332Mhz processor, 200MB memory
ncni RS6000, AIX 4.3,

332Mhz processor, 200MB memory
fender x86, Linux,

400Mhz processor, 256MB memory
gibson x86, Linux,

400Mhz processor, 512MB memory
kongo Sparc Ultra |, Solaris 5.6,

166Mhz processor, 192MB memory
pacers x86, Linux,

300Mhz processor, 512MB memory

a-g Java version

SoirT el s CEv e eoris Focr2e Ro o= CE e eoris oo 24
c-a & version o sava version

pn 4 e 4

- b N aa 4

= N 1z 4

- b N . 4

o fl 1 oo :

ot 1 o.e 1

-t .

=t i 4

Rodr reire CEv e reoras Foor2a Rod o= CE e euris oo 24
rn o version f-n save version

s [1 e "‘,

- b N aa 4

= N 1z 4

- b N . 4

ol 4 oe 4

ot i 4

-t 4 oa 4

=t N 4

o o

Roirs reire oo is euris Foor 2+ Ro o= Fooris EENTEE Ry =a
e —— oot Seve verston

- 4 e 4

= - o.= -
o o
Rour 1 hour & hour 12 hour 15 hour =a Ro! no! hour 12 hour 15 hou

Figure 2: Raw 24-hour bandwidth data. Left graph for each aw) is the C version, the right graph is

the Java version. Each host pairs is shown. The x-axis isdimdeéhe y-axis is bandwidth in Mb/s.

oo = vormion oo save version
aoo aoo
sso |- sso
200 |- soo
2o |- 2o
oo |- oo
1so 1so
100 100
so |- so
o o
ST o oo A= So oo s
cra e vermion g save version
aoo aoo
aso |- aso
soo |- 2o
seo |- oo
200 | 200
1m0 | 1s0
100 100
co |- co
° °
Rotr = T oo as Rotr oo as
fn e vermion o save varmion
aoo aoo
aso |- aso
soo |- 2o
seo |- oo
200 | 200
1m0 | 1s0
1oo | 100
oo ket sl Lia L l " Jh esiclin o mn L el l“.u [I MIL il
o o
Rovr = preTrs oo as 2 oo as
ke seve varmion
aoo aoo
aso |
2o |
zeo |
200 |
1m0 [
oo WL !
so so
o o

hour 12

hour 12

Figure 3: Raw 24-hour round trip time data. Left graph fortepair (row) is the C version, the right
graph is the Java version. Each host pairs is shown. Thesdskime and the y-axis is round trip time in
milliseconds.

a-g © veralon a-g Jave version
aco aco
aso 4 aso | i
soo H soo |- -
2s0 H zs0 |-
200 200 | -
1s0 1s0
100 Il % 100
so | 4 so | i
o o
Sour T Four S Four Az Four as oo 24 Sour T ro oor ey oor s
ca © version o a sava version
aco aco
aso | 4 aso | i
soo |- - soo |- i
2s0 | 4 2s0 | _
200 | 4 200 | _
150 |- 4 1s0 |
1co fh] l
so | 4 so | i
vy Four S oor ey v=rvre is Foor 24 Rodra o our Fey our is
fn © version fn Save version
aco aco
aso | 4 aso | i
soo |- 4 soo |- B
2s0 | 4 2s0 | i
200 | 4 200 | i
150 |- 4 150 |- i
100 | 4 100 | B
co bl “n N R WO N [il bl sl i co btk AT | - l.L b m b M i lI]
o o
Rodr T Four S Four Az oo as Foor 24 Rodr T o oor Py our is
Pk © version bk Sava version
200 200
sso | 4 sso | i
200 | 4 200 | i
zs0 | 4 zs0 | i
200 |- 4 200 |- i
1so |- 1so |-]
100 Jhl “l ‘M N 100 i
so [- so | i
° o
Rodr ™ mour s roor A= Y = ooy 2a Rodr T Four rooras Y =

Figure 4: Raw 24-hour round trip time (with the Nagle effadd}a. Left graph for each pair (row) is the C
version, the right graph is the Java version. Each host fgasisown. The x-axis is time and the y-axis is
round trip time in milliseconds. The Nagle effect is a TCPmijzation that delays small packets in attempt
to combine many into a single large transfer. If no other p&clare sent, the packets are forced to wait
unnecessarily.

Table 3: Mean and variance values of the C and Java bandwagkh d

C Version Java Version
Host Pair || Mean | Variance|| Mean | Variance
a-g 0.61 0.02 0.61 0.02
c-d 0.65 0.05| 0.65 0.05
f-n 1.41 0.00| 1.66 0.00
p-k 1.06 0.01f 1.01 0.01

Table 4: Mean and variance values of the C and Java rountirtrgpdata.

C Version Java Version
Host Pair || Mean | Varience|| Mean | Variance
a-g 96 890 96 1007
c-d 94 102 95 2888
f-n 49 3 49 9
p-k 95 175 96 3579

4 Comparing Raw Java and C Performance

The performance observed during a particular network teaisa function of the load on the network at the
time the transfer is made, the underlying network techngltige software installed at the end points, and the
machines involved in the transfer. To prevent network cetige, however, the underlying communication
protocol (TCP/IP in this case) adapts transfer rates inorespto dynamically changing traffic patterns. As
such, a controlled quiescent network may cause C and Jaysgpeaato have the same performance, but
that performance may differ when they are used to traversgonies experiencing load. Since the load is
varying quickly [15] it is difficult to compare the performas Java and C as it is impossible to test them
both under identical load conditions.

Even when the C and Java probes are run back-to-back, thenketanditions may change between
experiments making a pairwise comparison ambiguous. Tdrerenve resort to a comparison of statistical
characteristics generated from relatively large sample=aoh, and argue for equivalence (or otherwise)
based on these characteristics.

4.1 Comparison based on Moments

Tables 3 and 4 show the sample means and variances for bahdavid round-trip time (respectively)
between four representative host pairs over 24 hours.

Clearly, if each sample is large enough to capture the uyidgridistributional characteristics of the
method it represents, then C and Java are almost equivaléatns of their first two moments. That is,
while individual examples may not be comparable, the medgofmeance, and the variance in performance
between C and Java are very similar. The round trip time neeidor Java is greater than that for C
in the numbers presented. This is due to a small numbkes (neasurements in 24 hours) of very large
measurements that result from random catastrophic netexghts that occur for which the experiment
times out. It is our experience that this also occurs for the€asurements but less frequently in the data
provided in this paper. Such values significantly effectwhgance but since they occur so infrequently the

|

o
©

e o
N @

f <0 —
/
/

o
o

<«+—NORMAL

o
2]
o ¢

13

I
IS

o
w

=]
N
\\

RTT

o
o P

Percentage of Total Round Trip Time

Percentage of Total

o
n

z

o

by}

<

>

4

\

TN
AN

200 400 600 800
Cumulative Round Trip Time (msecs)

o

0.2 0.4 0.6 0.8 1
Cumulative Bandwidth (Mb/s)

o

Figure 5: Comparison of the cumulative distribution fuang (CDFs) for round trip time (left) and band-
width (right) measurements for the c-d data set resultingnfthe Java version. The CDF of each resource
is compared to the normal distributions derived from themesad variance of the sample. The graphs for
the C version are indistinguishable.

mean is unaffected. Unfortunately, since network perforeadata is not well approximated by Normal
or other forms of exponential distributions, it is difficuti determine the statistical significance of this
comparison rigorously. If, for example, the distributicare heavy-tailed, it is possible that extremely large
samples must be observed before a comparison of the monsmke@xposed to a rigorous statistical test.
As an example of how poorly a Normal approximates the digfidins we observe, Figure 5 compares CDFs
for the observed c-d data set (latency and bandwidth) wittmdbcurves having the same sample mean and
variance.

4.2 Comparison based on Regression Coefficients

Moment-based comparisons assume that the time at whichsaaaple is gathered is irrelevant since the
sample statistics are not weighted with respect to time.t iByét is possible for the means and variances
to appear to be the same, but for a pairwise comparison talrewdifference between samples gathered at
approximately the same time. To capture this notion of tdtependent comparison, we can calculate the
regression coefficient between samples. We pair togetieevdrom each sample based on time stamp
(two values taken nearest in time form a pair) and then cateuhe linear coefficients based on least-
squares regression. Our motivation is to observe how gldselderived multiplicative constant is a0 for
the different traces. Table 5 shows the results. A value h@andicates that, on the average, multiplying
the C value byi.0 yields an accurate prediction of the corresponding Javseval

The first column of Table 5 is for bandwidth, the second fombtrip time, and the third for round
trip time with the Nagle effect. When two sets of measureseote from the same series the least square
regression value of their differences is very closé.t This value also provides an estimate of the percent
difference between the average measurements (it is thBoeef that the Java value is multiplied by to get
a corresponding C value). If the figure is less than 1.0, thedava version reported measurements that are
less than those reported by C (higher round trip times andddandwidth values). For example, the table
shows that for the pair a-g (ash-gibson), the Java bandwidifisurements are 1% less on average than the
C bandwidth measurements. The round trip time without antl thie Nagle effect measurements for this
pair of hosts are (on average) 7% and 13% slower, respeagtitxain that of the C version for this link.

Table 5: Least square regression of C to Java measuremersyvdf the coefficients are equal to 1.0, then
the values reported by the Java version are from the sameséres as the C version.

Host Pair|| Bandwidth | Round Trip| Round Trip

Time Time (Nagle)
a-g 0.99 0.93 0.87
c-d 1.01 1.00 0.96
f-n 1.18 1.00 1.00
p-k 0.95 0.99 0.98

The least squares regression coefficient is impacted bigwmuiih the data. For bandwidth, there were no
obvious outliers. For round-trip time, however, there waceasional values that deviated by two or three
orders of magnitude. We do not believe that these valuesearesentative of C or Java effects but rather
catastrophic network failures. That is, at various pointime, either the C or the Java measurement (but
not both together) was affected by an interruption in nekwsmmnectivity. In order to rectify this problem
and report a value unaffected by outliers, we removed olsvauiliers (pairs of measurements where one
was 2 or 3 orders of magnitude bigger than the other) expetisats. The number of values removed were:
a-g (2), and f-n (4). The total number of values in each traeg@proximately 7200 (every 12 seconds for 24
hours) making these outliers very infrequent. A thorouglegtigation of the hypothesis that these outliers
result from network behavior (and not C or Java performaisctje subject of our future work.

If the least squares regression coefficient is greater th@ntllen the Java version reported measure-
ments that, on average, were better than that of the C verdimtice that in c-d and f-n the bandwidth
measurements from the Java version are better (greateiltbathan the C version. This condition also
occurred for two other host pairs we examined in our studyldfked into this anomaly (since we believed
that in every case Java should be slower than C due to exttagsing overhead of Java socket abstractions
and interpretation) and found that the operating systenhersérver end of these three pairs of machines
were all IBM RS6000’s running operating system (OS) AlX wens4.3. In addition, each receive operation
performed by the echo server on these machines occurreddksiior 512 bytes (the maximum transfer unit
(MTU) set as the default during AlX installation). On all etthost pairs, the MTU on the server machine
ranged from 1KB to 2KB. When we modified the C version to sendgua buffer size of 64KB instead of
32KB, the least square bandwidth coefficients changed WfbrGall such pairs. This indicates that Java the
version we incorporated used a buffers size of 64KB. Onlymthe receive size is 512 bytes or less, is the
overhead of sending 2-32KB buffers (as opposed to 1-64KEHudipparent. We would like to control the
Java buffer size in order to ensure it is the same as in thesowerbut Java version 1.1x does not provide a
mechanism for modifying the buffer size. We use the 64KBdnsize C version data for the predictability
tests in Section 5. It is a noteworthy point, however, thathbffer size affects predictability. For systems
such as Java 1.1x (which uses undocumented, unalteralféx bires) the buffer sizes used may interact
with the base OS in ways that magnify the uncertainty inhtdrethe underlying network dynamics.

Alternatively, Java 2 does provide a mechanism for settiegbuffer size on sockets. We ran a series
of bandwidth experiments on a pair of hosts (k-j) for whickal@ was available. JavaNws ran on a host
located at UCSD (k) and the server was located at UTK (j); ara/BNS was the primary Network between
them. The least squares fit between C and Java improved fi@®1.00 when we used a buffer size of
32KB on both the C and Java versions, again demonstratingffibet of buffer size on observed, end-to-end
predictability. The data (Table 6) indicates that coningllithe buffer size is important to ensure equivalent
performance from the C and Java versions. In the JavaNw®imgitation we have developed, we use the

Table 6: Least squares regression of C to Java measurenmees vesing a buffer size of 32KB in both C
and Java (using Java 2) versions.

Host Pair Bandwidth
k-j (Java 1.1.3) 0.92
k-j (Java 1.2.1) 1.00

Java 2 socket buffer interface as available.

Another interesting insight that this data provides us vstthat the Nagle algorithm and TCP “delayed
acking” strategy seems to effect the Java TCP-sockets ategrextent than C TCP-sockets. This effect can
be seen by comparing the rightmost column with the middlarool of Table 5. When the Nagle algorithm
is used, the Java measurements are not as close to the C emasts as when the Nagle algorithm is turned
off. We are not, at present, able to discern the nature offifierence although we speculate that Java and C
are managing their socket buffers differently and the tesulses a slight timing difference which the TCP
optimizations magnify.

We also learned that the system-supplied data structussstasmanage the buffers in the probe pro-
grams is significant. In order for the Java version to repaasarements similar to those of the C version,
we had to ensure that we used byte arrays in Java to write teottleet. This data structure eliminates the
overhead of buffering and conversion so that the timinggdéva version reported were much closer to those
from the C version.

One source of error we were not able to eliminate, howevemsfrom the difference in clock precision
that is available to user-level programs from Java and @ t&urns a rounded long-typed millisecond value
when the time is queried and C returns a pair of long integers {or the number of seconds since 1970 and
one containing the number of microseconds since the lassumeg second). Small differences between C
and Java performance may be caused by this rounding effect.

5 Comparing Java and C Predictability

Table 4 (from the previous Section) indicates that thereléger variance in the Java version of the round
trip time data not seen in the bandwidth data. This diffeeemay be due to the sample size (not enough
data) or it may be an indication that probe trace from the ¥Javsion is not equivalent to that from the C
version. Indeed, recent work indicates that network peréorce may be heavy-tailed making the problem
of determining an appropriate sample size for statistigaliicance difficult to solve.

Rather than tackling this often intractable problem, weertbat most often performance profile data
is used to make some form of prediction. If not used for faidgdosis, performance traces are almost
always used to anticipate future performance levels. A,udserexample, may examine a recent history
of measurements to anticipate the duration a particulavorittransfer he or she wishes to perform. As
such, we can frame the problem of determining equivalenderms of the degree to which one set of
measurements can be used to prefiittire values of the others. If the technologies are equivalerteir t
predictability, the observed difference in variance catrbated as random measurement error.

Note that, again, statistical significance is an issue. Asgfaour engineering-based approach, how-
ever, we report how predictabie terms of observed prediction err@ach series is over suitably long time
periods. That is, regardless of statistical significanice prediction error is what we observed under actual
load conditions. The consistency with which we observesltihé basis for our conclusions.

Bandwidth Measurement Comparison (c-d data) Bandwidth Prediction Comparison (c-d data)

09 1 0.9 //GMM

08 08
71 2071 /
,jVV, My \g/ 0.6 4 A
gos{/

2041

m 0.3 —
C Measurements —Predictions from C Measurements
0.2 1 —Predictions from Java Measurements
0.1 —Mean Value

o
\,

o
o

o«
~

Bandwidth (Mb/s)
o
[¢2]

o o
N ow
|

—Java Measurements

o
e

o
o

.) Time (20 minutes)
Time (20 minutes)

Figure 6: Comparison of C and Jasatual (left) and predicted(right) bandwidth measurements over a
20 minute interval. The x-axis is time (20-minutes) and thaxis is Mb/s. The data is taken from the
cross-country, c-d, 24-hour data used throughout thisystlitie right graph of the figure exemplifies the
smoothing effect prediction has on the data. Observatiahepredicted values indicates that the C and
Java data sets are quite similar. This is less clearly obddrem the actual measurements in the left graph.

To compare performance trace predictability, we treat gmohe trace as a time series and look at the
prediction error generated by the NWS forecasting systeracfibed in Section 2 and more completely in
[19]). At each point in the trace, we make a prediction of theceeding value. The forecasting error is
calculated as the difference between a value and the fanbedpredicts it.

The advantage of this approach is that it admits the poggibil the underlying distributions changing
through time (non-stationarity) since the NWS forecasteghniques are highly adaptive. That is, we do
not treat each trace as a sample, but rather as a series, aaeho¥ which may depend on the time it is
taken. In addition, using prediction based on actual vadlss"smoothes” the data by eliminating outlying
values that must be treated as random or catastrophic rleéwents. Figure 6 shows a 20-minute snapshot
of data in this time series format of C and Java bandwidth oreasents (left graph) and the NWS predicted
values (right graph) computed using C and Java measurenidr@glata is taken from the 24-hour c-d data.
The right graph of the figure exemplifies the smoothing effeetliction has on the data. Observation of the
predicted values indicates that the C and Java data setsiggesgnilar. This is less clearly observed from
the actual measurements in the left graph.

5.1 Histograms and CDFs of Error Values

In addition to the observation of time series from forecdstalues, the predictability of two samples can
be compared using a histogram of the error values. The ealaevs the difference between the NWS
predicted value and the actual value that it predicts foh ¢imee step. For both the C and Java versions of
each set of predicted measurements, we form a histogram0dbih® spanning the difference between the
minimum and maximum measured values. Figures 7, 8, and @iodhe histograms for each pair of hosts
for bandwidth (7), round trip time (8), and round trip timetwihe Nagle effect (9). The left graph is the C

version and the right is the Java version. Clearly, the drisipgrams are almost identical.

Histograms are useful for visualizing distributional dbta prone to variation due to bin size. Indeed,
the predictability for the round trip time (Figure 8 and 9)amarements are difficult to compare using this
format. This difficulty is due to the the presence of infragilyeoccurring values that we cannot rule out as
outliers. Many histogram “buckets” contain very few datane¢énts with one or two buckets containing the
large portion of the data. It is difficult to determine vidyahe contribution that these buckets (that contain
very little data each) make to either the difference or sintiy between error series.

As an alternative, we generated graphs of the data in cuweildistribution functional (CDF) form.
Figures 10, 11, and 12 contain the CDFs of the predictiorr&foy bandwidth and round trip time, respec-
tively, for each host pair and version. CDFs indicate the@atage of error values that are below a given
value. They enable us to compare two data sets for equivalarterms of this percentage. For example, in
the first row of Figure 10, both the C and the Java version CDéigate that 55% of the error values fall
at or below zero. When the C and Java versions of the CDF graples overlayed, one masks the other
almost completely indicating the same findings as those ft@rhistogrammed values: the two data sets
are equally predictable.

5.2 Empirically-derived Confidence Intervals

Another technique we can use to compare two data sets iséonat if the confidence interval for each
prediction matches between the two series in question. ythaahat the pairs of values differ, but that they
must fall within the same range when predicted. If they dentive conclude that the series are equivalent
based on their predictability.

Since it is likely that the series of forecasting errors gatexl for each measurement trace is non-
stationary, we are unable to supply a rigorous definition obafidence interval. Instead, we calculate a
conditional confidence interval empirically, at each pdina measurement trace, based on the forecasting
errors associated with the values proceeding that poinat Bh we defineC'I,(M) to be the forecasting
confidence interval at timewithin a measurement tradd. CI,(M) = (f;—2x+MSEy, fi+2xMSE;)
wheref; is the forecast of the measurement value occurring attjraedM S E;, is the sample mean of the
squared forecasting errors occurring before tinretrace M .

In this formulation, eacly; is treated as a conditional expectation of the measurernmetcasts. The
V"M SE; is analogous to the conditional sample standard deviafitinecforecasting error series. As such,
it resembles the formula for calculating a 95% confidenceryatl for a Normally distributed sample which
is (m — 1.96 x sd,m + 1.96 x sd) for a population sample with mean and standard deviatiosu. We
make no claims about the optimality or bias of our formulati®ather, we note that it has proved a useful
engineering approximation for measurement series gathmsréhe NWS.

By establishing confidence boundaries using two standavidtins from the predicted values, we cre-
ate two new time series between which we postulate that 95keoheasurements will fall. In addition, if at
least 95% of the Java measurements are captured betweermthgiitally-derived confidence boundaries,
and vice versa, then Java and C are equally predictable. igh&this is the case then it does not matter
which language was used to generate the predicted valuesasurements since they are indistinguishable
within engineering tolerances (95%).

Table 7 shows the empirically derived confidence intervalgte data sets and the percent of measure-
ment values captured by each language. Indeed, the datrsétslistinguishable and one could be used to
predict the other. That is, the data sets are equivalentméttimmon engineering thresholds and C and Java
TCP-socket implementations are equivalent. This pointdbezpeating. If 95% of the Java measurements

5The histograms are, indeed, so similar that we were not alsagerimpose one over the other meaningfully without thke us
of color.

oo | _
oa | 7 o.0a _
or | _
os | 7 o.0e - _
os | _
oa | 7 o.0a _
o= | _
oz |- 7 .02 | _
il ‘ |
° . \H\HHH‘ HHMM T ° mmmH H‘HH‘“M
2os oy == e & e 5 S e 2o e o e & o 5= s e
c-dt = version c-dt dave version
o.a o.a
as [7 o.as [_
o= | 7 o= | _
s [7 o.=s [_
o= | 7 o= | _
as | 7 .= | _
o | 7 o | _
os | ‘ 1 ee=| ‘ i
. m\\‘ ‘\‘ . m\“ ‘m
by 5= o= e T 5= o= e
o = version - Seve version
- o.c
- L 7 o [-
A 7 o L 7
= L 7 o= | _
=L 7 o= L _
P 7 o1 | _
. Al . ll,
= = S o= & o= T Ear = = Er S o= & o= T Ear =
Pk © version pot Sava version
o.a o.a
as [7 o.as [_
o= | 7 o= | _
s [7 o.=s [_
o= | 7 o= | _
as | 7 o.as | _
o | 7 o | _
os |- ‘ m oc.os | ‘ m
° HH‘ T ° m\m ‘w
T os e ea oE & S 5a o o= S T os e =a oF & 5 5% o o= S

Figure 7: Histograms of error values from bandwidth prédictising measurements from C (left) and Java
(right) versions. The predictability of two samples can bepared using a histogram of the error values.
The error value is the difference between the NWS predictddevand the actual value that it predicts
for each time step. For both the C and Java versions of eadaf peedicted measurements, we form a
histogram of 100 bins spanning the difference between timénmim and maximum measured values. The
graphs indicate that the Java version of the bandwidth daia predictable as the C version.

as as
o - o i
=5 | - =5 | i
o= [- o= [i
=5 | - =5 | i
o= [- o= [i
as [- as | i
o [- o [i
os | i os | ‘ A
. \‘ “\ . \‘ ‘\m
Paco Soo ° oo S50 soo Soo Paco Soo ° S50 soo Soo
c-a © version c-at Jave version
2 2
e b - e b i
= - = i
- - - i
e - e i
- b - - b i
= - = b i
= b - = i
b - b i
° °
°sco) Soo 1000 iS00 2000 2500 S000 SS00 A000 asoo °sco B Soo 1000 1500 2000 2500 S000 SS00 4000 asoo
n © version -n Jave version
2 2
e b - e b i
= - = i
- - - i
e - e i
- b - - b i
= - = i
= - = i
b - b i
o L o
> so S so oo 5o oo 5o Soo > so so oo 5o oo =so Soo
Pk © version bk sava version
- -
e - e i
- b - - b i
= b - = b i
= - = i
a b - a b i
° °
°sco) Soo 1000 1500 2000 2500 S000 SS00 A000 asoo °sco) Soc 1000 1500 2000 2500 S000 SS00 A000 asoo

Figure 8: Histograms of error values from round trip timedicdon using measurements from C (left)
and Java (right) versions. The predictability of two samptan be compared using a histogram of the
error values. The error value is the difference between &N redicted value and the actual value that it
predicts for each time step. For both the C and Java versiaach set of predicted measurements, we form
a histogram of 100 bins spanning the difference between thiemam and maximum measured values. The
graphs indicate that the Java version of the round trip tiete t as predictable as the C version.

a-g < version a-g Java version

Asoo “1o000 “soo =) so0 1000 1500 Asoo “1o000 “soo =) s00 1000 1500

=00 “Zoo “1o00 =) 100 =Zoo ET=1=Y =00 “Zoo “1o0 =) 100 Zoo =00

-n < version f-n Java version

~ao “=o E=T=) EEXS) =) EX=) =0 =0 “o ~ao =0 “=o EEX=) =) 10 ETe) =0 Ao

p-k < version P-kk Java version

’soco =) Soo 1000 1500 =000 =500 =000 “sco =) Soo 1000 1500 Zooo =500 =000

Figure 9: Histograms of error values from round trip timetfwthe Nagle effect) prediction using measure-
ments from C (left) and Java (right) versions. The predititglof two samples can be compared using a
histogram of the error values. The error value is the diffeeebetween the NWS predicted value and the
actual value that it predicts for each time step. For bothGQhend Java versions of each set of predicted
measurements, we form a histogram of 100 bins spanning fieeesice between the minimum and maxi-
mum measured values. The graphs indicate that the Javawefdine round trip time data (with the Nagle
effect) is as predictable as the C version.

a-g < version

a-g Java version

“o.e “oa o= =) o.= o.a o.e

“oe “oa o= =) o.= o.a o.e

c-a < version

c-a < version

=3 oA o= =) .= o.a

f-n Java version

“oo

p-k < version

EEY o5 =) o5 EY

P-kk Java version

o5 =) o5

“o.s =) o5

Figure 10: Cumulative distribution function (CDF) of thea@rvalues from bandwidth predictions using
measurements from C (left) and Java (right) versions. Aerréditive method for comparing predictability
of two data sets is to visualize the cumulative distributitbeach set. CDFs indicate the percentage of error
values that are below a given value. They enable us to contpardata sets for equivalence in terms of
this percentage. The graphs indicate that the Java versitie d®wandwidth data is as predictable as the C

version.

a-g < version

a-g Java version

. .

T T

. .

. .

Jdo 0 I]
o L ° _

Figure 11: Cumulative distribution function (CDF) of thea@rvalues from round trip time predictions using
measurements from C (left) and Java (right) versions. Aerréditive method for comparing predictability
of two data sets is to visualize the cumulative distributitbeach set. CDFs indicate the percentage of error
values that are below a given value. They enable us to contpardata sets for equivalence in terms of
this percentage. The graphs indicate that the Java versibe cound trip time data is as predictable as the

C version.

ao o version oo Java version
2 2
s L 4 oo I 4
= L 4 os | 4
- b 4 o I 4
e L 4 o |- 4
s b - os 4
a b 4 oa [4
s b 4 o= | 4
= L 4 o= I 4
A b 4 o |- 4
-
Y soo Sooo =y S =50 Tooo Tsoo 560 Soc =00 =50 S =50 Py s6c soo iooo
o aea o version c-dea < version
2 2
s L 4 oo L 4
= L 4 os | 4
- b 4 o I 4
e 4 o |- 4
s b - os 4
a b 4 oa [4
s b 4 o= | 4
. 4 o= 4
A b 4 o |- 4
. J . J
= =5 S ES) oo Fw=r) =50 S=o 2165 =5 S ES) Fr=T) 5o =50 S=o
fnea o version rnea Java version
2 2
s L 4 oo I 4
= L 4 os | 4
- L 4 o I 4
e L 4 o |- 4
s b - os 4
a b 4 oa [4
= b 4 o= | 4
= L 4 o= I 4
A b 4 o |- 4
- -
rsy =o 2o o S S ES) ES) So rsy =o 2o SO S S ES) ES) So
Bk © version bk Jave version
2 2
s L 4 oo I 4
s L 4 os | 4
- b 4 o I 4
e 4 o |- 4
s b - os b 4
a b 4 oa [4
= b 4 o= | 4
= L 4 o= I 4
A J m o J i
o o
%266 S66 Z60 150) FYer) BTy S66 @oo Soo °s65 S =50 oo Frerrsy Errery Ssoo

Figure 12: Cumulative distribution function (CDF) of thearvalues from round trip time (with the Nagle
effect) predictions using measurements from C (left) ama Jeght) versions. An alternative method for
comparing predictability of two data sets is to visualize tumulative distribution of each set. CDFs
indicate the percentage of error values that are below angiskie. They enable us to compare two data
sets for equivalence in terms of this percentage. The griaplisate that the Java version of the round trip
time (with the Nagle effect) data is as predictable as therSiwe.

Table 7: 95% Empirically-derived (E-d) confidence intesvahd the percent of capture for each language.
The values in each (row,column) indicate the percentageesfsarement values (generated using the lan-
guage indicated by the column header) that fall within (araptured”) by the 95% empirically-derived
confidence interval for the language indicated by the rovdbed~or example, using the fifth row and sec-
ond column of data: 97% of Java measurements (column heagecaptured by the 95% e-d confidence
interval for the C language (row header)

Round Trip Time Bandwidth
Pct. of C meas.| Pct. of Java meas| Pct. of C meas.| Pct. of Java meas

Host Pair || Language Captured Captured Captured Captured
a-g C 98 98 95 95

Java 98 98 95 95
c-d C 97 98 97 96

Java 98 98 97 97
f-n C 98 97 97 98

Java 97 98 98 97
p-k C 98 98 96 95

Java 99 99 97 94

fall within the corresponding’I values generated for a C measurement trace, and vice Veesseries are
interchangeable for the purposes of making performanddigti@ns in an engineering setting.

6 Extending JavaNws

One limitation of the JavaNws is due to applet executiorri@gins; the Java applet may only communicate
with the machine from which the applet was loaded (the sonraehine). This prohibits measurement of
the network between the desktop and an arbitrary machinkbetween two arbitrary machines. It may be
desirable for a user to be able to gather this informatiomfraachines on which he has no logins (thereby
disallowing installation of the NWS by the user). In additidthe NWS may already be installed on many
machines of interest. We are currently extending the Jagafdvaccess measurements taken by either an
extant installation of the NWS (of network performance besgwarbitrary pairs of machines) or the JavaNws
applet (of performance between the server and the deskép@nding upon which is more convenient. The
JavaNws forecasters will continue to be used to predictéutieliverable performance, regardless of which
mechanism provides measurement data.

As part of future work, we plan to investigate the effect ohgsJust-In-Time compiled and JNI im-
plemented Java TCP/IP socket measurement routines. Iticaddiince the JavaNws is used on a single
server by multiple clients, we will also determine the amtafrlatency that is imposed by the server load
necessary to respond to client requests. By incorporatingNws access to an NWS server, we will be able
to monitor and predict server load. Such measurements cdisplayed in a JavaNws graph to enable the
user to visualize both the network and server CPU performanc

7 Conclusion

We have designed and implemented a Java implementatiore dfi¢twork Weather Service (NWS). Ja-
vaNws is a fully functional tool that allows a user to visaalihe current and future, predicted performance
of the network between the desktop and any World Wide WebBite tool capitalizes on the transfer model
and availability of Java and is currently being used to faté high-performance distributed computing with
Java. To measure and predict network performance, the davalplet conducts a series of experiments

between the desktop and a server program executing at thérait which the applet was downloaded.
JavaNws uses the NWS forecasting algorithms (implememiddva) to predict the network performance
of the near-term. Bandwidth and round trip time (using TOPksts) measurements and forecasts are then
presented to the user in a constantly updated graphicabtorm

To validate that JavaNws can be used to measure and predisbrkeperformance available to any
download or application written using the JamaC TCP-socket interface, we provide a quantitative study
of the performance differences between Java and C sockétrimeptations. We use rigorous statistical
analysis (mean/variance and least squares regressiounletout differences between the data sets due to
population size, outlying data, and other such anomalies shiéw these sample-based techniques indicate
that the data collected by the Java version is equivalerthifwengineering tolerances) to that by the C
version.

We then compare the predictability of the JavaNws data tooththie equivalent C version. We compute
error values (differences between predicted and actuaksglusing the NWS forecasting algorithms and
analyze both the error and predicted values as time seriesth&vi construct histograms and cumulative
distribution functions (CDFs) that indicate very littleffdrences between the C and Java error value series.
Finally, we describe a novel and empirical extension to thdssical confidence interval technique. With
empirically-derived confidence intervals we are able tasti@at predictions made using Java measurements
are indistinguishable from those made using C measureméntsdetailed analysis establishes that the C
and Java TCP-socket interface implementations are eguival

References

[1] G. Box, G. Jenkins, and G. Reinsellime Series Analysis, Forecasting, and Control, 3rd editio
Prentice Hall, 1994.

[2] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A simpdéwork management protocol (snmp), May
1990. http://www.ietf.cnri.reston.va.us/rfc/rfc1157 .txt

[3] M. Faerman, A. Su, R. Wolski, and F. Berman. Adaptive perfance prediction for distributed data-
intensive applications. IRroceedings of SC9®November 1999.

[4] M. P. I. Forum. Mpi: A message-passing interface statddechnical Report CS-94-230, University
of Tennessee, Knoxville, 1994,

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchakd V. SunderamPVM: Parallel Virtual
Machine A Users’ Guide and Tutorial for Networked Paraller@puting MIT Press, 1994.

[6] J. Gosling, B. Joy, and G. Steel€he Java Language Specificatiohddison-Wesley, 1996.
[7] C. Granger and P. Newboldrorecasting Economic Time Seriescademic Press, 1986.

[8] R.Haddad and T. ParsorBigital Signal Processing: Theory, Applications, and Hamte Computer
Science Press, 1991.

[9] Hypertext transfer protocol - HTTP/1.1, Jan. 1997.
http://www.ics.uci.edu/publ/ietf/http/rfc2068.txt

[10] The cooperative association for internet data angbyittp://www.caida.org

[11] The internet performance and analysis projebttp://www.merit.edu/ipma

[12] V. Jacobson. A tool to infer characteristics of intdrn@aths. available from
ftp://ftp.ee.lbl.gov/pathchar

[13] R. Jones.http://lwww.cup.hp.com/netperf/netperfpage.html . Netperf: a network
performance monitoring tool.

[14] C. Krintz and R. Wolski. Javanws: The network weathevise for the desktop. IdavaGrandeJune
2000.

[15] W.e. a. Leland. On the self-similar nature of ethernaffic. IEEE/ACM Transactions on Networking
February 1994.

[16] T.Lindholm and F. Yellin.The Java Virtual Machine SpecificatioAddison-Wesley, 1997.
[17] The network weather service home padptp://nws.npaci.edu

[18] A. Su, F. Berman, R. Wolski, and M. Strout. Using AppLeSthedule a distributed visualization tool
on the computational gridinternational Journal of High Performance Computing Applions 13,
1999.

[19] R. Wolski. Dynamically forecasting network perforncanusing the network weather servi€duster
Computing 1998. also available from http://www.cs.ucsd.edu/usetgpublications.html.

[20] R. Wolski, N. Spring, and J. Hayes. The network weatleevise: A distributed resource performance
forecasting service for metacomputinguture Generation Computer Systeri899. available from
http://www.cs.utk.edu/"rich/publications/ nws-arch.p s.gz .

