
An Evaluation of Distributed Datastores Using
the AppScale Cloud Platform

Chris Bunch Navraj Chohan Chandra Krintz Jovan Chohan
Jonathan Kupferman Puneet Lakhina Yiming Li

Computer Science Department
University of California, Santa Barbara

{cgb, nchohan, ckrintz, jovan, jkupferman, puneet, yimingli}@cs.ucsb.edu

Yoshihide Nomura
Software Innovation Laboratory

Fujitsu Labs Ltd., Japan
nomura@pobox.com

Abstract—We present new cloud support that employs a
single API – the Datastore API from Google App Engine
(GAE) – to interface to different open source distributed
database technologies. We employ this support to “plug
in” these technologies to the API so that they can be used
by web applications and services without modification. The
system facilitates an empirical evaluation and comparison
of these disparate systems by web software developers, and
reduces the barrier to entry for their use by automating
their configuration and deployment.

Index Terms—database concurrency operations; cloud
computing; platform-as-a-service (PaaS);

I. I NTRODUCTION

Cloud computing is an attractive utility-computing
paradigm based on Service Level Agreements (SLAs)
that is experiencing rapid uptake in the commercial
sector. Cloud systems offer low cost public access to vast
proprietary compute, storage, and network resources.
These systems provide per-user and per-application iso-
lation and customization via a service interface that is
typically implemented using high-level language tech-
nologies, well-defined APIs, and web services.

A key component of most cloud platforms (e.g.
Google App Engine (GAE), Microsoft Azure,
Force.com), and infrastructures (e.g. Amazon Web
Services (AWS) and Eucalyptus [20]), is scalable
and fault tolerant structured data management. Cloud
fabrics typically employ proprietary database (DB)
technologies internally to manage system-wide state and
to support the web services and applications that they
make available to the public. In addition, in some cases
(e.g. for AWS SimpleDB, GAE BigTable, Azure Table
Storage), the cloud fabrics export these technologies via
programmatic interfaces and overlays for use by user
applications.

Open source DBs have emerged which emulate the
functionality of popular cloud DBs including HBase,
Hypertable, Cassandra, and others. Many of which have
been customized and are in use internally by success-
ful web service providers, including Facebook, Baidu,

SourceForge, and LinkedIn. The appearance of these new
(proprietary and open source) data management systems
have spawned a heated debate over the use of traditional
relational data models (e.g. those offered by SQL-based
systems such as Oracle, Sybase, and MySQL) versus
these “NoSQL” (non-relational) systems for cloud-based
applications. Such discussions focus on the differences
in scale, dynamism, complexity, and ease of use.

In addition to data model, these offerings (both rela-
tional and non-relational) vary widely and can differ in
query language, topology (master/slave vs peer-to-peer),
data consistency policy, replication policy, programming
interfaces, and implementations in different program-
ming languages. In addition, each system has a unique
methodology for configuring and deploying the system
in a distributed environment. As a result, the use and
deployment of any of these systems imposes a significant
learning curve on web application developers, making
it challenging for them to compare and evaluate these
systems for different applications. Furthermore, the sheer
number of datastores that have emerged recently make it
extremely difficult to perform a meaningful comparison
across these very different datastores in a repeatable,
consistent fashion.

To address these challenges, we investigate the effi-
cacy of using a single well-defined API, the Google App
Engine (GAE) Datastore API, as a universal interface to
different cloud DBs. To enable this, we have developed
the “glue” layer that links this API and different DBs
so that we can “plug in” disparate systems easily. We
also couple this component with tools that automate
configuration and the distributed deployment of each
DB. We implement this support via the AppScale cloud
platform – an open-source cloud-platform implementa-
tion of the GAE APIs that executes using private and
public virtualized cluster resources (such as Eucalyptus
and Amazon EC2). We use this system to empirically
evaluate and compare how well seven different popular
DB technologies map to the GAE Datastore API (with-
out modification or customization). We find that the DB



Fig. 1. Depiction of Google App Engine (GAE).

technologies employed vary greatly in their performance
characteristics, typically in favor of those with more
entry points for reading and writing data.

II. GOOGLE APPENGINE

Google App Engine (GAE) is a software develop-
ment platform depicted in Figure 1 that facilitates the
implementation of scalable Python and Java web appli-
cations. These applications respond to user requests on
a web page using libraries and GAE services, access
structured data in a non-relational, key-value datastore,
and execute tasks in the background. The set of libraries
and functionality that developers can integrate within
the applications is restricted by Google, i.e. they are
those “white-listed” as activities that Google is able to
support securely and at scale. Google provides well-
defined APIs for each of the GAE services. When a
user uploads her GAE application to Google resources
(made available via “MyApp”.appspot.com) the APIs
connect to proprietary, scalable, and highly available
implementations of each service.

Google offers this platform-as-a-service (PaaS) free of
charge. However, applications must consume resources
below a set of fixed quotas and limits (API calls per
minute and per day, bandwidth and CPU used, disk
space, request response and task duration, mail sent) or
the request and/or application is terminated. Users can
pay for additional bandwidth, CPU hours, disk, and mail.

The key mechanism for facilitating scale in GAE
applications is the GAE Datastore. The GAE Datastore
API provides the following primitives:

• Put(k, v): Add keyk and valuev to table; creating
a table if needed

• Get(k): Return value associated with keyk

• Delete(k): Remove keyk and its value
• Query(q): Perform queryq using the Google Query

Language (GQL) on a single table, returning a list
of values

• Count(t): For a given query, returns the size of the
list of values returned

The Google cloud implements this API via BigTable [6],
and adds support for management of transactional in-
dexed records via MegaStore. BigTable is a strongly-
consistent key-value datastore, the data format and layout
of which can be dynamically controlled by the appli-
cation. BigTable is optimized for reads and indexing,

Fig. 2. Depiction of an AppScale Deployment.

can be accessed using arbitrary strings, and is optimized
for key-level synchronization and transaction support.
BigTable employs the distributed and proprietary Google
File System [9] (GFS) for transparent data replication
for fault tolerance. It internally uses a master/slave rela-
tionship with the master node containing only metadata
and coordinating read/write requests to slave nodes, who
contain the replicated data in the system. Slave node
failures can be tolerated, but the master node is a single
point of failure in the system.

Users query data using GQL and the platform serial-
izes data for communication between the front-end and
BigTable using Google Protocol Buffers [21]. Google
provides other forms of data management via the Mem-
cache API for caching of non-persistent data using an
interface similar to the Datastore API, and the Blobstore
API which enables users to store/retrieve large files (up
to 50MB).

To better understand the functionality, behavior, and
performance of the GAE cloud and its applications, to
enable research in the next-generation of PaaS systems,
and to provide a pathway toward GAE without concern
for “lock-in” and privacy of code/data, we developed
AppScale. AppScale is a robust, open source imple-
mentation of the GAE APIs that executes over private
virtualized cluster resources and cloud infrastructures in-
cluding AWS and Eucalyptus. Existing GAE applications
execute over AppScale without modification. We detail
the AppScale system in [7] and overview its components
in the subsections that follow. That work established
support across HBase and Hypertable, and this work
expands that to include support for MySQL, Cassandra,
Voldemort, MongoDB, and MemcacheDB. We focus on
a novel implementation of the Google Datastore API
within AppScale, support for integrating and automat-
ing deployment of the open source databases, and an
empirical evaluation of these disparate DBs.

III. A PPSCALE

Figure 2 depicts a typical AppScale deployment. Sys-
tem administrators configure and deploy an AppScale
cloud using a set of command-line tools. The tools en-
able users to configure/start/stop a cloud, upload/remove
a GAE application, and retrieve statistics on resource
availability and use. AppScale also implements a web-
based interface to the tools for manipulating an extant



cloud and viewing the status of the cloud. For this study,
we consider a static cloud configuration – the size is
specified at cloud instantiation and remains the same
until the cloud is destroyed. The primary components
of AppScale are the AppController, the AppServer, the
AppLoadBalancer, and the contribution of this paper,
pluggable database support.

AppController. The AppController is a SOAP server
that runs on every node in the system. An AppCon-
troller is aware of the layout of the cloud and starts
up the necessary services in the required order. The
AppController is able to customize a node with any
component and service available in AppScale. If the node
instantiates a database that requires configuration files,
the AppController writes the files in the correct locations.
The AppController also usesiptables to allow only
AppScale nodes to access component ports. The first
AppController in the system plays a special role in the
cloud, sending a heartbeat message every ten seconds to
all nodes in the system and recording whether or not the
node is alive. It also profiles the other nodes, recording
metrics such as CPU and memory usage to employ for
dynamically scaling the cloud.

AppServer. The AppServer component is the open
source GAE SDK that users employ to test, debug,
and generate DB indices for their application prior to
uploading it to the Google cloud. We replace the non-
scalable API implementations in the SDK with efficient,
distributed, and open source systems. We use available
Python and Java libraries for many of the services
(e.g. Memcache, Images), the local system for others
(Mail), and hand-built tools for others (Tasks). For the
Datastore API, we modify the SDK to open a socket
and forward the protocol buffer to a remote server (the
SDK simply puts/gets protocol buffers to/from a file).
We remove all quota and programming restrictions that
Google places in GAE applications that execute within
its cloud and have added new APIs, including one that
provides applications with access to Hadoop Streaming
for user-defined MapReduce computation.

AppLoadBalancer. To partition the access by users to
a GAE application web page across multiple servers,
we employ the AppLoadBalancer. This component is
a Ruby on Rails application that selectively chooses
which AppServer should receive incoming traffic, and
uses the nginx web server [18] to serve static content.
It also authenticates the user (providing support for the
Google Users API). Multiple copies of this service run
and are load balanced by HAProxy [12]. The current
implementation does not use the AppLoadBalancer as
a reverse proxy, as is commonly done, to prevent it
from becoming a single point of failure. Thus, users
will see the URL change in their address bar. If the

AppLoadBalancer fails, AppServer execution and user-
AppServer interaction is unaffected.

IV. A PPSCALE DISTRIBUTED DATABASE SUPPORT

In order for AppServers to communicate with the
backend datastore the data must be serialized via Google
Protocol Buffers. Requests are sent to a Protocol Buffer
Server (PBServer) which implements the Datastore API.
Upon receiving a request, the PBServer extracts it and
then makes the appropriate API call for the currently
running datastore. This is not always a simple task, as
there is not always a one-to-one correlation between
Datastore API calls and what the underlying datastore
supports. For example, some Datastore API calls create
a table to store data in, and some of the datastores
encountered here only allow for a single table to be used
in the system.

AppScale automates the deployment of distributed
database technologies. To enable this, we release App-
Scale as an operating system image that users can
instantiate directly over virtualization technologies with-
out any manual configuration or deployment. This pro-
vides functionality similar to that of Hadoop-on-Demand
(HOD) [11] for each datastore. AppScale generates all
of the necessary configuration files, command line ar-
guments, and environment variables automatically. Fur-
thermore, AppScale starts up the necessary services for
each datastore in the correct order. This typically requires
some amount of coordination amongst the AppCon-
trollers in the system, as even though some datastores run
in a peer-to-peer configuration, one peer in the system
must always be started first and allows for the other peers
to easily locate each other in the system and manage
data.

In this work, we employ this support to “plug in”
seven open source distributed database systems that
we selected because of their maturity, widespread use,
documentation, and design choices for distribution, scale,
and fault tolerance. We also include MySQL Cluster,
which, unlike the others, is not a key-value store but
instead is a relational database. We include it to show
the extensibility of our framework and to compare its
use as a key-value store, with the others.

A. Cassandra

Facebook engineers designed, implemented, and re-
leased the Cassandra datastore as open source [4] in
2008. Cassandra offers a hybrid approach between
the proprietary datastore implementations of Google
BigTable and Amazon Dynamo. It takes the flexible
column layout offered by the former and combines it
with the peer-to-peer layout of the latter in the hopes
of gaining greater scalability over other open source



solutions. Cassandra is currently in use internally at
Facebook, Twitter, Cisco, among other web companies.

Cassandra is eventually consistent. In this model,
the system propagates data written to any node to all
other nodes in the system. These multiple entry points
improve read performance, response time, and facilitates
high availability even in the face of network partitions.
However, there is a period of time during which the state
of the data is inconsistent across the nodes. Although
algorithms are employed by the system to ensure that
propagation is as fast as possible, two programs that
access the same data may see different results. Eventual
consistency cannot be tolerated by some applications;
however, for many web services and applications, it
is not only tolerated but is a popular trade-off for the
increased scalability it enables.

Cassandra is written in the Java programming lan-
guage and exposes its API through the Thrift software
framework [22]. Thrift enables different programming
languages to communicate efficiently and share data
through remote procedure calls. Cassandra internally
does not use a query language, but instead supports range
queries. Range queries allow users to batch primitive
operations and simplify query programming. Cassandra
requires that table configurations be specified statically.
As a result, we are forced in AppScale to employ a single
table for multiple GAE applications.

B. HBase

Developed and released by PowerSet as open source in
2007, HBase [13] became an official Hadoop subproject
with the goal of providing an open source version
of Google’s BigTable. HBase employs a master-slave
distributed architecture. The master stores only metadata
and redirects clients to a slave for access to the actual
data. Clients cache the location of the key range and send
all subsequent reads/writes directly to the corresponding
slave. HBase also provides flexible column support, al-
lowing users to define new columns on-the-fly. Currently,
HBase is in use by PowerSet, Streamy, and others.

HBase is written primarily in Java, with a small
portion of the code base in C. HBase exposes its API
using Thrift and provides a shell through which users can
directly manipulate the database using the HBase Query
Language (HQL). For users accessing the Thrift API,
HBase exports a Scanner interface with which developers
traverse the database while maintaining a pointer to
their current location. This functionality is useful when
multiple items are retrieved a “page” at a time.

HBase is deployed over the Hadoop Distributed File
System (HDFS) [10]. HDFS is written in Java and for
each node in the cluster, it runs on top of the local host’s
operating system file system (e.g. ext2, ext3 or ext4
for Linux). HDFS employs a master-slave architecture

within which the master node runs a NameNode daemon,
responsible for file access and namespace management.
The slave nodes run a DataNode daemon, responsible
for the management of storage on its respective node.
Data is stored in blocks (the default size is 64 MB) and
replicated throughout the cluster automatically. Reads
are directed to the nearest replica to minimize latency
and bandwidth usage. Like Google’s BigTable over GFS,
by running over a distributed file system, HBase achieves
fault tolerance through file system replication and imple-
ments strong consistency.

C. Hypertable

Hypertable was developed by Zvents in 2007 and later
released as open source with the same goal as HBase:
to provide an open source version of Google’s BigTable.
Hypertable employs a master-slave architecture with
metadata on the master and data on the slaves. All client
requests initially go through the master and subsequent
client request go directly to the slave. Currently, Hyper-
table’s largest user is the Chinese search provider Baidu
which reports running Hypertable over 120 nodes and
reading in roughly 500 GB of data per day [15].

Hypertable is written in C++ to facilitate greater con-
trol of memory management (caching, reuse, reclama-
tion, etc.) [14]. Hypertable exposes its API using Thrift
and provides a shell with which users can interactively
query the datastore directly using the Hypertext Query
Language (HQL). It provides the ability to create and
modify tables in a manner analogous to that of SQL
as well as the ability to load data via files or standard
input. Hypertable also provides a Scanner interface to
Thrift clients.

Like HBase, Hypertable also runs over HDFS to lever-
age the automatic data replication and fault tolerance
that it provides. Hypertable splits up tables into sets
of contiguous row ranges and delegates each set to a
RangeServer. The RangeServer communicates with a
DFS Broker to enable Hypertable to run over various
distributed file systems. RangeServers also share access
to a small amount of metadata, which is stored in a
system known as Hyperspace. Hyperspace acts similarly
to Google’s Chubby [3], a highly available locking and
naming service that stores very small files.

D. MemcacheDB

Open source developer Steve Chu modified the pop-
ular caching frameworkmemcached to add data persis-
tence and replication. He released the resulting system
as MemcacheDB in 2007 [16]. MemcacheDB employs a
master-slave approach for data access, with which clients
can read from any node in the system but can only
write to the master node. This ensures consistency while
allowing for multiple read entry points.



MemcacheDB is written in C and uses Berkeley DB
for data persistence and replication. Clients access the
database using any existing memcached library. Clients
perform queries via the memcachedget_multi func-
tion to request multiple keys at once. Since the system
does not track of all the items in the cache, a query that
retrieves all data is not possible: developers who require
this functionality must manually add and maintain a
special key that stores all of the keys in use.

MemcacheDB runs with a single master node and
multiple replica nodes. Users instantiate the Mem-
cacheDB service on the master node and then invoke
replica nodes, identifying the location of the master.
Since the master does not have a configuration file
specifying which nodes are replicas in the system, any
node can potentially join the system as a replica. This
flexibility can present a security hole, as a malicious
user can run their own MemcacheDB replica and have
it connect to the master node in an attempt to acquire its
data. Clients can employ Linuxiptables or other fire-
walling mechanisms to restrict access to MemcacheDB
master and slave nodes.

E. MongoDB

MongoDB was developed and released as open source
in 2008 by 10gen [17]. MongoDB was designed to
provide both the speed and scalability of key-value
datastores as well as the ability to customize queries
for the specific structure of the data. MongoDB is a
document-oriented database that is optimized for do-
mains where data can be manifested like documents, e.g.
template and legal documents, among others. MongoDB
offers three replication styles: master-slave replication, a
“replica-pair” style, and a limited form of master-master
replication. We consider master-slave replication in this
work. For this architecture, all clients read and write by
accessing the master, ensuring consistency in the sys-
tem. Commercially, MongoDB is used by SourceForge,
Github, Electronic Arts, and others.

MongoDB is written in C++. Users can access Mon-
goDB via language bindings that are available for many
popular languages. MongoDB provides an interactive
shell with its own query language. Queries are performed
using hashtable-like access. The system exposes a cursor
that clients can use to traverse the data in a similar
fashion to the HBase and Hypertable Scanner interface.

MongoDB is deployed over a cluster of machines in a
manner similar to that of MemcacheDB. No configura-
tion files are used and once the master node is running,
an administrator invokes the slave nodes, identifying the
location of the master. MongoDB suffers from the simi-
lar security problem of unauthenticated slaves attaching
to a master; administrators can useiptables or other
measures to restrict such access to authorized machines.

F. Voldemort

Developed by and currently in use internally at
LinkedIn, Voldemort emulates Amazon Dynamo and
combines it with caching [23]. It was released as open
source in 2009. Voldemort provides eventual consis-
tency; reads or writes can be performed at any node by
clients. There is a short duration during which the view
of the data across the system is inconsistent. Fetches on
a key may result in Voldemort returning multiple values
with their version number, as opposed to a single key
(the latest version) as is done in Cassandra. It is up to
the application to decide which value is valid. Voldemort
persists data using BerkeleyDB [1] (or other backends)
and allows the developer to specify the replication factor
for each chunk of the distributed hash table employed for
distribution. This entails that the developer also partition
the key space manually.

Voldemort is written in Java and exposes its API via
Thrift; there are native bindings to high-level languages
as well that employ serialization via Google Protocol
Buffers [21]. A shell is also provided for interactive
queries.

G. MySQL

MySQL is a well-known relational database. We em-
ploy it within the AppScale DB framework as a key-
value datastore. We store a list of columns and the
value for it in the “value” column. This gives us a new
key-value datastore that provides replication and fault-
tolerance. There are many MySQL distribution models
available; we employ MySQL Cluster in this paper.
The node that performs instantiation and monitoring is
referred to as the management node, while the other
nodes which store the actual data are referred to as data
nodes. A third type of node is the API node, which
stores and retrieves data from data nodes. Application
clients using MySQL Cluster can make requests to any
of the API nodes. It provides concurrent access to the
system while providing strong consistency using two-
phase commit amongst replicas. Additionally, the system
is fault tolerant with the master node only required for
initial configuration and cluster monitoring.

MySQL is written in C and C++. As it is a mature
product, it has API drivers available in most program-
ming languages. A shell is provided for interactive
queries written in SQL, and programs using the native
drivers can also use the same query language to interact
with the database.

V. EVALUATION

We next employ AppScale and our Datastore API
extensions to evaluate how well the different databases
support the API. We first overview our experimental
methodology and then present our results.



A. Methodology

To evaluate the different datastores, we use Active
Cloud DB [2], a Google App Engine application that
exposes a REST API to the Datastore API’s primitive
operations. We then measure the end-to-end response
time (round-trip time to/from the datastore through the
AppServer). For all experiments, we fill a table in each
database with 1,000 items and perform multiple put,
get, delete, no-op (the AppServer responds to the client
without accessing the database) and query operations
in order (1,000 puts, gets, deletes, and no-ops, then
100 queries) per thread. A query operation returns the
contents of a given table, which in these experiments
returns all 1,000 items. We consider (i) light load: one
thread; (ii) medium load: three concurrent threads; and
(iii) heavy load: nine concurrent threads. We repeat
each experiment five times and compute the average
and standard deviation. As a point of reference, a single
thread in a two-node configuration (more on this below)
exercises the system at approximately 25 requests per
second.

We execute this application in an AppScale cloud.
We consider different static cloud configurations of size
1, 2, 4, 13, and 96 nodes. In the 1, 2, and 4 node
deployments, each node is a Xen guestVM that executes
with 2 virtual processors, 10GB of disk (maximum),
and 4GB of memory. In the 13 and 96 node deploy-
ments, each node executes with 1 virtual processor and
1GB of memory. The 1-node configuration implements
an AppLoadBalancer (ALB), AppServer (AS), and an
AppDB Master (DBM). For multi-node configurations,
the first node implements an ALB and DBM and the
remaining nodes implement an AS and DBS. For clouds
with greater than 4 nodes, we consider heavy load
only. For these experiments, AppScale employs Hadoop
0.20.0, HBase 0.20.3, Hypertable 0.9.2.5, MySQL Clus-
ter 6.3.20, Cassandra 0.5.0, Voldemort 0.51, MongoDB
1.0.0, and MemcacheDB 1.2.1-Beta.

We also vary consistency configurations using Cas-
sandra and Voldemort, to evaluate its impact on perfor-
mance. For our Cassandra deployment, a read succeeds if
it accesses data from a single node, and a write succeeds
automatically. Writes go to a buffer, which a separate
process then writes to the datastore. If conflicts arise,
the version with the newer timestamp is accepted and
duplicated as needed. This therefore presents a highly
inconsistent but potentially faster performing datastore.
For our Voldemort deployment, we have chosen to
employ a stronger consistency configuration. Data is
replicated three times, and all three nodes with each
piece of data must be in agreement about any old values
to read or new values to write. We therefore expect this
strongly consistent datastore to perform slower than its
inconsistent counterpart.

B. Experimental Results

We next present results for end-to-end web application
response time for individual API operations using the
different datastore systems. Response time includes the
round-trip time between the client and database, and
includes AppServer, DBM or DBS, and database access.
We consider puts, gets, deletes, no-ops, and queries
using the workloads described above. We present only a
subset of the results, due to space constraints, but select
representative datasets. In most experiments the standard
deviation is very low (a few milliseconds maximum).

Figure 3 shows three graphs with the response time
for put, get, and delete primitive operations, respectively,
under medium load (the light load results are similar).
We consider clouds of 1, 2, and 4 nodes in these graphs.
We omit data for HBase, Hypertable, and MySQL Clus-
ter for the single node configuration since they require
a dedicated node for the master in AppScale, i.e., they
do not suport a 1-node deployment.

The x-axis identifies the database and the y-axis
shows the average operation time in seconds. The graphs
show that master-slave datastores provide better response
times over the peer-to-peer datastores. As the number of
nodes increase in the system, response times decrease as
expected. All databases perform similarly and improve
as the number of nodes increases, but the peer-to-peer
databases and MySQL perform the best at four nodes.
This is due to the increased number of entry points to the
database, allowing for non-blocking reads to be done in
parallel. The put and delete operations perform similarly
and gets (reads) experience the best performance.

We next present the performance of the query opera-
tion under different loads using the 4-node configuration,
in Figure 4. Each bar is the query response time in
seconds for light, medium, and heavy loads respectively.
Query is significantly slower than the other primitive
operations since it retrieves all items from the database
as opposed to working on a single item. Response time
for queries degrades as load increases. The large number
of threads and operations of the heavy load degrades
performance significantly for some databases. MySQL
Cluster scales the best for these load levels, which is
believed to be due to its much greater maturity compared
to the other database offerings seen here. Hypertable
outperforms MySQL Cluster for light load and ranks
second across databases for medium and heavy load.

We next consider heavy load for the put, get, and
query operation (delete performs similarly to put) when
we increase the number of nodes past 4. We present the
4-node query data from Figure 4 in the right graph and
the other results in Figure 5. The x-axis is response time
in seconds – note that the scale for query is different
since the query operation takes significantly longer to
execute than put or get. We omit data for MySQL Cluster



HBase Hypertable MySQL Cassandra Voldemort MongoDB MemcacheDB
0

0.05

0.1

0.15

0.2

0.25

0.3

P
ut

 R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

 

 
1 Node
2 Nodes
4 Nodes

HBase Hypertable MySQL Cassandra Voldemort MongoDB MemcacheDB
0

0.05

0.1

0.15

0.2

0.25

0.3

G
et

 R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

 

 
1 Node
2 Nodes
4 Nodes

HBase Hypertable MySQL Cassandra Voldemort MongoDB MemcacheDB
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
el

et
e 

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

 

 
1 Node
2 Nodes
4 Nodes

Fig. 3. Average time for put (left), get (middle), and delete(right) operations for the different databases using AppScale. We show results
for medium load (three threads). The data includes round-trip (no-op) time. For each graph, we show three bars for different numbers of cloud
nodes (1, 2, and 4). We were unable to run HBase, Hypertable, and MySQL in a single node configuration, so no data is present for those
scenarios.

for 96 nodes because it does not support greater than 48
nodes (and we were unable to get it to perform with
stability for larger than 13 nodes). We omit Voldemort
data for 13 and 96 nodes because the database returns
errors when the number of nodes exceeds 4. We are
currently working with the Voldemort team on this issue.

As we increase the number of nodes under heavy
load, the response time increases slightly for put and
get (and delete). This is likely due to the additional
overhead that is required for managing the larger cluster
system in support of ensuring consistency and providing
replication. For queries, increasing the number of nodes
from 4 to 13 improves query response time in most
cases. This improvement is significant for Cassandra and
MemcacheDB. Increasing the node count past 13 for
this load level provides very little if any improvement
for all databases. MySQL performs significanly better
than the others for this load level and the 4 and 13
node configurations for query. It performs similarly for
puts, gets, and deletes as Cassandra and Voldemort, and
significantly outperforms the other datastores.

These experiments also revealed a race condition
in our query implementation. Specifically, dynamism
restrictions for three datastores (Cassandra, Voldemort,
and MemcacheDB) require that we employ a single
table for data and simulate multiple tables by storing a
special key containing a list of the keys currently in the
given table. We use this “meta-key” whenever queries are
performed, however updates to it are not atomic. In our
experiments, we find that a race occurs very infrequently
and does not significantly impact performance. We plan
to release the fix for this issue in an upcoming release of
AppScale. Furthermore, our current implementation only
allows for database accesses to be done via the master
node for HBase and Hypertable, whereas only the first
access needs to contact the master node. We therefore
are working on changing AppScale accordingly, in order
to improve performance and throughput.

Finally, we investigate the performance of our applica-

HBase Hypertable MySQL Cassandra Voldemort MongoDB MemcacheDB
0

2

4

6

8

10

12

14

16

18

Q
ue

ry
 R

es
po

ns
e 

T
im

e 
(s

ec
on

ds
)

 

 
Light Load
Medium Load
Heavy Load

Fig. 4. Average time for the query operation under differentloads
using the four node configuration.

tion using the Google cloud with the BigTable backend.
The average no-op time (round-trip time) between our
cloud and Google is 240ms with a standard deviation
of 4ms; using AppScale on our local cluster, average
no-op time is 78ms with a standard deviation of 2ms.
Private clouds enable lower round-trip times which may
prove important for latency-sensitive applications. Our
results for get, put, delete, and query (without the no-
op/round-trip time) using the Google cloud (with an
unknown number of nodes) is similar to those for App-
Scale/MySQL with four or more nodes (the difference
is statistically insignificant). Moreover, the Google DB
access times show higher variance.

VI. RELATED WORK

To our knowledge, this is the first project to offer
a unified API together with a framework for automati-
cally deploying and evaluating open source distributed
database systems for use with real web applications



HBase Hypertable MySQL Cassandra Voldemort MongoDB MemcacheDB
0

0.1

0.2

0.3

0.4

0.5

P
ut

 R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

 

 
4 Nodes
13 Nodes
96 Nodes

HBase Hypertable MySQL Cassandra Voldemort MongoDB MemcacheDB
0

0.1

0.2

0.3

0.4

0.5

G
et

 R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

 

 
4 Nodes
13 Nodes
96 Nodes

HBase Hypertable MySQL Cassandra Voldemort MongoDB MemcacheDB
0

2

4

6

8

10

12

14

16

18

Q
ue

ry
 R

es
po

ns
e 

T
im

e 
(s

ec
on

ds
)

 

 
4 Nodes
13 Nodes
96 Nodes

Fig. 5. Average time for the put (left), get (middle), and query (right) under heavy load as we increase the number of nodesin the cloud
configuration. Note that the y-axis scale differs for query (right graph). MySQL Cluster does not support greater than 48nodes; Voldemort
returns errors when the number of nodes exceeds 4. We are currently working with the Voldemort team on the latter issue. The delete data
(omitted) is very similar to that of put.

and services. In addition, we offer a description of the
characteristics and deployment methodologies of seven
popular DB systems. The web offers many sites that
describe these systems (e.g. [5], [19]) but there is no
single peer-reviewed published study that describes their
characteristics and deployment process.

The one related effort is the Yahoo! Cloud Serving
Benchmark (YCSB). YCSB [8]. The authors present a
benchmarking system for cloud serving systems. YCSB
enables different database technologies to be compared
using a single system as AppScale does. In contrast to
AppScale, YCSB does not automate configuation and
deployment of datastores, focuses on transaction-level
access as opposed to end-to-end application performance
for DB accesses, and is not yet available as open source.
YCSB currently supports non-replicated DB configura-
tions, for HBase, Cassandra, PNUTS (Yahoo’s internal
key-value store), and Sharded MySQL.

VII. C ONCLUSIONS

We present an open source implementation of the
Google App Engine (GAE) Datastore API within a
cloud platform called AppScale. The implementation
unifies access to a wide range of open source distributed
database technologies and automates their configuration
and deployment. However, each database differs in the
degree to which it implements the API, which we
analyze herein. We describe this implementation and use
the platform to empirically evaluate each of the databases
we consider. In addition, we articulate our experience
using and integrating each database into AppScale. Our
system (including all databases) is available as a virtual
machine image at http://appscale.cs.ucsb.edu.

VIII. A CKNOWLEDGEMENTS

We would like to thank the developers and commu-
nities of the datastores in this paper for their help and
support. This work was funded in part by Google, IBM,
and the National Science Foundation (CNS/CAREER-
0546737, CNS-0905273, and CNS-0627183).

REFERENCES

[1] BerkeleyDB. http://www.oracle.com/technology/products/
berkeley-db/index.html.

[2] C. Bunch, J. Kupferman, and C. Krintz. Active Cloud DB: A
Database-Agnostic HTTP API to Key-Value Datastores. InUCSB
CS Technical Report 2010-07.

[3] M. Burrows. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. InOSDI’06: Seventh Symposium on Oper-
ating System Design and Implementation, 2006.

[4] Cassandra. http://cassandra.apache.org/.
[5] R. Cattell. Datastore Survey – work in progress, Apr. 2010.

http://cattell.net/datastores/Datastores.pdf.
[6] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A Dis-
tributed Storage System for Structured Data. InSymposium on
Operating System Design and Implementation, 2006.

[7] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman,
and R. Wolski. AppScale: Scalable and Open AppEngine
Application Development and Deployment. InInternational
Conference on Cloud Computing, Oct. 2009.

[8] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB
(to appear), June 2010. http://research.yahoo.com/node/3202.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. InACM SOSP, 2003.

[10] Hadoop. http://hadoop.apache.org/.
[11] Hadoop on demand. http://hadoop.apache.org/common/docs/r0.

17.1/hod.html.
[12] HAProxy. http://haproxy.1wt.eu.
[13] HBase. http://hadoop.apache.org/hbase/.
[14] Hypertable. http://hypertable.org.
[15] D. Judd. Hypertable Talk at NoSQL meetup in San Francisco,

CA. June 2009., June 2009.
[16] MemcacheDB. http://memcachedb.org/.
[17] MongoDB. http://mongodb.org/.
[18] Nginx. http://www.nginx.net.
[19] K. North. Databases in the Cloud: Elysian Fields or Briar Patch?,

Aug. 2009. http://www.drdobbs.com/java/218900502?pgno=1.
[20] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,

L. Youseff, and D. Zagorodnov. The Eucalyptus Open-source
Cloud-computing System. InIEEE International Symposium on
Cluster Computing and the Grid, 2009. http://open.eucalyptus.
com/documents/ccgrid2009.pdf.

[21] Protocol Buffers. Google’s Data Interchange Format. http://code.
google.com/p/protobuf.

[22] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable
Cross-Language Services Implementation, Apr. 2007. Facebook
White Paper.

[23] Voldemort. http://project-voldemort.com/.


