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Abstract

To enable analysis and visualization of phased behavior in Java programs and to facilitate optimization de-
velopment, we have implemented a freely-available, phase analysis framework within JikesRVM. The framework
couples existing techniques into a unifying set of tools for data collection, processing, and analysis of dynamic
phased behavior in Java programs. The framework enables optimization developers to significantly reduce anal-
ysis time and target optimization (by-hand or automatic) to parts of the code that will recur with sufficient
regularity. We use the framework to evaluate phased behavior in the SpecJVM benchmark suite.

1 Introduction
Recent research in the area of feedback-directed, hardware-based optimization has identified potential optimiza-
tion opportunities in the repeating patterns in the time-varying behavior, i.e., phases, of programs [11, 3, 12].
Phases represent intervals during program execution that are similar (repeat). Hence, phase information can
be used to reduce analysis and profiling overhead (analysis of an interval in a phase is the same as that for all
intervals in the phase), and to identify repeating behavior that can be exploited with code specialization.

Phased behavior, if present in Java programs, has the potential for enabling significant performance improve-
ments in both JVM and program execution. Phases can be used to reduce the overhead of online instrumentation
and analysis and to guide optimization, adaptation, and specialization [5, 14, 15]. However, to date, phased be-
havior in Java programs has not been thoroughly researched. In addition, there are many open questions about the
various components of the methodology of phase behavior collection. For example, what interval size (number
of instructions), i.e., granularity should be used? Is this interval size application specific? How should similarity
between two intervals be measured? Studies have shown that the answers to these questions significantly impact
the detection of phase boundaries [6], and thus, the degree to which phases can be exploited.

To facilitate research into these questions and into the phased behavior in Java programs, we have developed a
toolkit and JVM extensions for the collection and visualization of dynamic phase data. In addition, our framework
enables researchers to experiment with the various parameters associated with phase detection and analysis,
e.g., granularity and similarity. Our framework incorporates phase collection techniques used by the binary
optimization and architecture communities into a freely-available JVM. Our toolset is intended for use offline to
gather phase data and to simplify and facilitate phase analysis as part of the design and implementation process
of high-performance Java programs and JVM optimizations. We first describe the system in detail then show
how it can be used to visualize and analyze phased behavior in a set of commonly used Java benchmarks.

2 JVM Phase Framework
To better understand the potential benefits from exploitation of phased behavior in Java programs, we developed
a framework for Java Virtual Machines that allows application developers, as well as architects of dynamic
optimization systems, to visualize, investigate, and experiment with phase behavior data in Java programs. The
framework consists of a data generator and a set of tools for the extraction and analysis of phased behavior. In



this section, we describe the implementation of each and discuss how each component can be parameterized to
facilitate research and investigation into customization of phase collection and analysis.

We implemented the phase framework as an extension to the Jikes Research Virtual Machine (JikesRVM) from
IBM T.J. Watson Research [1]. JikesRVM is an adaptive optimization system that uses online instrumentation
to apply optimization dynamically to methods of a Java program that account for a significant portion of the
execution time. We extended this JVM with instrumentation for basic blocks that causes basic block frequencies
to be collected into an array, i.e., a basic block vector, during program execution. We apply the highest level of
optimization to all application and library methods.

To capture the time-varying aspect of program behavior, we decompose program execution into fixed size
intervals, where size is determined by the number of dynamic instructions. This size is specified by a command-
line parameter; we use value of 5 million in this study. At the end of each interval, we take a snapshot of the
basic block vector and store it in an Interval Queue; a background thread periodically empties the queue to disk.
Upon program termination, a file on disk contains a trace of per-interval basic block vectors for the program.

We next describe the second part of our phase framework: The set of tools for extraction and analysis of
phased behavior from the profile information gathered from the data generator. The toolkit consists of four tools:
an image generator and visualizer, a phase finder, a phase analyzer, and a code extractor. The tools are written in
Perl and Java and are easily extensible.

2.1 Phase Visualizer

The phase visualizer consumes the phase trace and generates a portable graymap image from it. This image can
be viewed using any image viewer; however, we developed our own Java-based viewer that enables users to point
(using the mouse) to a pixel on the image and view the interval coordinates. These coordinates allow the user to
identify intervals within a visualized phase.

An image produced by the phase analyzer is shown

Figure 1: Phases Visualizer on Compress100

in Figure 1. The data in the figure was taken from the
phase trace of SpecJVM benchmark 201 compress
using input size 100. Each image is a similarity ma-
trix [10]; the x-axis and y-axis are increasing interval
identifiers (ids). An interval is a period of program
execution (specified during trace collection); we as-
sign interval ids in increasing order starting from 0.

The visualizer omits data in the lower triangle since
it is symmetric with the upper triangle. Each point,
with co-ordinates x and y, denotes how similar inter-
val y is to interval x. Dark pixels indicate high simi-
larity. White indicates no similarity. A user can read
the figure by selecting a point on the diagonal; By
then traversing the row, she can visualize, how sim-
ilar intervals that follow this interval during execution are. The grayscale depiction of similarity enables iden-
tification of phases, phases boundaries, and repeating phases over time. We discuss how we compute interval
similarity in the next section.

2.2 Phase Finder

To determine which intervals are similar (and thus, the pixel color displayed by the visualizer), the second tool
that we developed is the Phase Finder. The tool consists of two components: One that computes the similarity
between intervals and another that clusters intervals into phases.



Two intervals are similar if the execution behavior that each represents is correlated. As such, we use the vector
distance between the basic block vectors representing the two intervals. Specifically, we compute similarity as
the Manhattan distance between two vectors. We compute Manhattan distance as the sum of the element-wise
absolute differences between two normalized vectors and is a value between 0 and 2. A difference value of zero
implies that the two vectors are entirely similar and 2 indicates complete dissimilarity.

Other similarity metrics, e.g., vector angle [7], can be plugged into this component to enable evaluation of
the efficacy of different techniques. Once we compute interval similarity, we map the similarity value to one of
65536 different grayscale values to generate the portable graymap image.

The clustering component, uses interval similarity to determine which intervals should be included in a phase.
This component is also pluggable, i.e., any clustering algorithm can be inserted, experimented with, and evaluated
in terms of its efficacy for phase discovery. We currently implement a simple threshold-based mechanism that
identifies similar intervals for this component. The user provides a Manhattan distance threshold (between 0 and
2 in which 0 means perfectly similar and 2 means completely dissimilar). This component then extracts intervals
with Manhattan distances below the threshold specified. This simple mechanism enables users to adjust and
experiment with the threshold value.

2.3 Phase Analyzer and Code Extractor

As part of our toolset, we also developed two tools that enable users to extract statistics as well as code from each
phase or interval: The Phase Analyzer and the Code Extractor.

The phase analyzer generates and filters data to aid in the analysis of phases and individual intervals. It lists
the intervals in each phase as well as how often the phase occurs and in what durations over the execution of
the program. The phase analyzer extracts details about the behavior of individual intervals or entire phases. For
example, it reports the number of phases found, the number of instructions in each phase (over time), and how
many instructions occur in dissimilar intervals that interrupt the different phases. Moreover, it lists sorted basic
block and method frequencies. This information is useful in identifying “hot spots” in the execution.

For all of the data reported by the phase analyzer, we include a number of filters that significantly simplify
analysis of the possibly vast amounts of data generated for a program. For example, a user can specify a threshold
count below which data is not reported. This enables users to analyze only the most frequent data. In addition,
data can be combined into cumulative counts or into a number of categories, e.g., instructions, basic blocks,
methods, and types of instructions.

Finally, to analyze the program code that makes up a phase, we developed a code extraction tool. By inputting
intervals identified by the visualizer and statistics generated by the phase analyzer, users can use the code extractor
to dump code blocks of interest. The granularity of the dump can be specified to be a single basic block, a series
of basic blocks, or an entire method. We show how the tools in the toolkit can be employed in the next section.

3 Phase Behavior in Java Programs
The data we present in this section was gathered by executing Java benchmarks on a 1.13Ghz x86-based single-
processor Pentium III machine running Redhat Linux v2.4.5 We used JikesRVM version 2.2.2. The programs we
examined are from the SpecJVM98 benchmark suite [13].

Each of the similarity graphs that follow, can be read, as described previously, as an N x N similarity matrix,
where N is the number of intervals in the program’s execution. An entry in the matrix at position (x,y) is a pixel
colored to represent the similarity between interval x and interval y. The diagonal is black since an interval is
entirely similar to itself. To see how an interval relates to the remaining program execution, we locate the interval
of interest, say x, on the diagonal and move right along the row. Dark areas in the row identify intervals that are
similar in behavior to interval x.

As an example, consider the similarity matrix for the multi-threaded ray trace benchmark, Mtrt, when we
execute it with input size 10 (Figure 2). Mtrt executes 65 intervals of 5 million instructions. We start at the



top left corner of the matrix and move right along the x-axis. As we move right, we encounter dark pixels till
we reach interval 15. That is, the initial phase, phase-1, begins at interval 0 and continues through interval 15.
Interval 15 is entirely dissimilar and therefore belongs to another phase, which we call phase-2. After interval
15, the intervals alternate between phase-1 and phase-2 until we reach interval 44. From interval 44 until the end
of the execution, the intervals are completely dissimilar to phase-1.

Up to this point, we have visually discerned two phases. We
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Figure 2: Similarity graph for Mtrt10

have concluded that the intervals in phase-2 and intervals 44
through 65 are completely different from the intervals in phase-
1. Now, we must investigate how intervals from interval 44
through 64 relate to each other. We do this by locating inter-
val 44 on the diagonal and evaluating its row in the same way.
We can observe two different phases in this row. It is important
to note here that the dark intervals we encounter in row 44 are
in no way related to the dark intervals in phase-1 even though
the color may be the same. That is, a row in a similarity matrix
identifies the similarity between the row interval and all future
intervals.

Figure 3 shows the phases found by our phase-
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Figure 3: Phases for Mtrt10 (thresh: 0.8)

finder using a similarity threshold of 0.8 for Mtrt.
We use a figure to depict the output of the phase
finder. Each pattern indicates a different interval;
there were 3 phase detected. Using the phase an-
alyzer and code extractor, we can further evaluate
each phase by analyzing the commonly executing
methods. The most frequently executed methods in
phase-1 are ReadPoly in class Scene and �init� in
class PolyTypeObj. In phase-2 the most frequently
executed methods are CreateChildren and Create-
Faces in class OctNode. phase-3 then renders the scene by frequently executing Intersect from class OctNode,
Combine from class Point, and RenderScene from class Scene.

Figure 4 shows the interval similarity matrices for all of the SpecJVM benchmarks; we showed the omitted
benchmark, Compress, previously. Visual analysis of the benchmark data provides insight into the phase behavior
in the programs and also enables us to target our efforts for further analysis using the other tools as we did above
for Mtrt. We can see that each of the benchmark programs exhibits very different patterns.

In DB, Javac, Jess, and Mtrt there is a clear startup phase. Existing adaptive systems have shown that it can
be profitable to consider startup behavior separately from the remaining execution [15, 14]. This phase in these
four benchmarks is noticeably different from the rest of the execution. This is particularly evident in case of
Javac input size 100. Using further analysis of the number of instructions executed by different methods (using
the phase analyzer), we find that the most popular methods are read, scanIdentifier, and xscan during the first 90
intervals. They are again the most popular methods during intervals 202-212, depicted by the dark vertical bar in
the right part of the startup phase. They are rarely executed in all other phases.

Other programs exhibit other interesting phase features. Mpegaudio shows no apparent phased behavior. That
is, each interval is very similar to every other. Mtrt shows very dark intervals also, however there is a perceivable
pattern that traverses the matrix. Jack exhibits a very regular pattern: 16 rows of almost perfect squares. Output
from our phase analyzer for Jack reveals that the code does repeat itself 16 times. The reason for this is that this
benchmark is a parser generator that generates the same parser 16 times. Our framework correctly identifies this
repeating phase behavior.
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Figure 4: Similarity graphs for the SpecJVM benchmarks with input size 100. The interval length used is 5
million instructions. The number of intervals, n, vary and each graph is a n x n matrix with the x and y axes
representing the interval identifier. The lower triangle is a mirror image of the upper one and is masked for
clarity. Each point on the graph indicates the similarity between the intervals represented by that point. Dark
implies similar and light implies dissimilar. The diagonal is dark, since every interval is entirely similar to itself.



4 Related Work
Runtime phased behavior of programs has been previously studied and successfully exploited primarily in the
domain of architecture and operating systems [8]. The basis of our framework is to combine existing techniques
that have proven to be successful in these domains within an adaptive JVM context. [9] and [10] are two such
techniques. The authors of these works propose to use basic block distribution analysis to capture phases in
a program’s execution. They use phase information to reduce architectural simulation time by selecting small
representative portions of the program’s execution for extensive simulation. Basic block vectors are used to
characterize program behavior across multiple intervals of fixed duration and are classified into phases using
Manhattan distance and k-means clustering. [11] presents an online version of such phase characterization along
with a phase prediction scheme. The authors of this work also describe additional applications to configurable
hardware. Our framework employs this methodology within the data gathering component and phase finding tool
to enable collection and analysis of phase data in Java programs.

The authors in [2] and [4] stress the importance of exploiting phased behavior to tune configurable hardware
components. In the former, the authors compare working set signatures across intervals using a similarity measure
called relative working set distance to detect phase changes and identify repeating phases. In [4], the authors use
hardware counters to study the time-varying behavior of programs and use it in the design of online predictors for
two different microarchitectures. In other work [3], the authors compare three different metrics that characterize
phased behavior. The metrics are basic block vectors, branch counters and instruction working sets.

Hind et al. [6] examine the fundamental problem of phase shift detection and analyze its dependence on the
two parameters that define phased behavior, granularity and similarity. They demonstrate that for the SpecJVM
benchmark suite, observed phase behavior depends on the choice of parameter values. Our framework allows the
user to specify and experiment with both, possibly application-specific, parameters.

5 Conclusion
To enable the study of time-varying behavior, i.e., phased behavior, in Java programs, we developed an offline,
phase visualization and analysis framework within the JikesRVM Java Virtual Machine. The framework couples
existing techniques from other research domains (architecture and binary optimization) into a unified set of tools
for data collection, processing, and analysis of dynamic phased behavior in Java programs. The framework
enables optimization developers to significantly reduce analysis time and target adaptive optimization on parts of
the code that will recur with sufficient regularity.
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