
EAGER: Deployment-time API Governance for
Modern PaaS Clouds

Hiranya Jayathilaka, Chandra Krintz, Rich Wolski
Department of Computer Science
Univ. of California, Santa Barbara

Email: {hiranya,ckrintz,rich}@cs.ucsb.edu

Abstract—To track, control, and compel reuse of web APIs,
we investigate a new approach to API governance – combined
policy, implementation, and deployment control of web APIs.
Our approach, called EAGER, provides a software architecture
that integrates into PaaS platforms to support systemwide,
deployment-time enforcement of governance policies. Specifically,
EAGER checks for and prevents backward incompatible API
changes from being deployed into production PaaS clouds,
enforces service reuse, and facilitates enforcement of other best
practices in software maintenance via policies. Our experiments
with an EAGER prototype show that enforcing API governance
at deployment-time in PaaS clouds is efficient and scalable to
thousands of APIs and policies.

I. INTRODUCTION

The growth of the World Wide Web (WWW), web ser-
vices, and cloud computing have significantly influenced the
way developers implement software applications. Instead of
implementing all the functionality from the scratch, develop-
ers increasingly offload as much application functionality as
possible to remote, web-accessible application programming
interfaces (web APIs) hosted “in the cloud”. As a result, web
APIs are rapidly proliferating. At the time of this writing,
ProgrammableWeb [1], a popular web API index, lists over
12, 000 web APIs and a nearly 100% annual growth rate.

This proliferation of web APIs demands new techniques
that control and govern the evolution of APIs as a first-
class software resource (i.e. API governance) [2]. A lack
of API governance can lead to security breaches, denial
of service (DoS) attacks, poor code reuse and violation of
service-level agreements (SLAs). Unfortunately, most existing
cloud platforms within which web APIs are hosted provide
only minimal governance support. API governance for cloud
platforms consists of:

• deployment-time governance in which governance
checks are performed when the APIs are deployed to
the cloud, and

• runtime governance in which governance checks are
carried out when the APIs are invoked by clients.

Of these two, deployment-time enforcement (heretofore un-
explored) is attractive for several reasons. First, if runtime
only API governance is implemented, policy violations will go
undetected until the offending APIs are used (at which point
it is too late and expensive to take corrective measures). By
enforcing governance at deployment-time, cloud platforms can
support “fail fast” in which violations are detected immedi-
ately, before they become accessible to clients. Further, APIs

served from a cloud platform are invoked many more times
than they are deployed and redeployed. Therefore, deployment-
time API governance helps reduce the overall API governance
overhead by eliminating many checks that would otherwise be
repeated unnecessarily if executed as runtime checks.

In order to explore the feasibility and the performance traits
of deployment-time API governance in cloud platforms, we
are developing EAGER (Enforced API Governance Engine for
REST) [2], a model and an architecture that augments existing
Platform as a Service (PaaS) clouds in order to facilitate API
governance as a cloud-native feature. EAGER enforces proper
versioning of APIs and supports dependency management and
comprehensive policy enforcement, when APIs are deployed
to a PaaS.

EAGER enhances software maintainability by guaranteeing
that developers reuse existing APIs when possible to create
new software artifacts. Concurrently, it tracks changes made by
developers to deployed web APIs to prevent any backwards-
incompatible API changes from being put into production.
EAGER also includes a language for specifying API gov-
ernance policies. It incorporates a developer-friendly Python
programming language syntax for specifying complex policy
statements in a simple and intuitive manner. Moreover, our
approach ensures that specifying the required policies is the
only additional activity that API providers perform to benefit
from EAGER.

To evaluate the usefulness and the performance of
deployment-time API governance, we implement EAGER as
an extension to AppScale [3], an open source cloud platform
that emulates Google App Engine. Through this prototype we
show that the EAGER architecture and hence deployment-time
API governance can be easily implemented in extant clouds
with minimal changes to the underlying platform technology.
Further, our performance test results show that EAGER scales
well to handle thousands of APIs, policies and API inter-
dependencies, thus bringing the cloud computing community
several steps closer to supporting comprehensive low-overhead
API governance as a cloud-native feature.

II. EAGER

Figure 1 illustrates the main components of EAGER (in
blue) and their interactions. Solid arrows represent the inter-
actions that take place during application deployment-time,
before an application has been validated for deployment (an
application may export zero or more web APIs). Short-dashed

Fig. 1. EAGER Architecture

arrows represent deployment-time interactions that follow ap-
plication validation. Long-dashed arrows represent runtime
interactions.

EAGER is invoked whenever a developer attempts to
deploy an application, using the developer tools available on
his/her workstation. In some cloud implementations these tools
may be available as an online service accessed via a web
browser. In either case, the application deployment request is
intercepted by EAGER API Deployment Coordinator (ADC),
which then performs the required governance checks based on
the metadata stored in the Metadata Manager. The Metadata
Manager stores application names, versions, dependencies,
API specifications, user profiles and API keys. Governance
checks are driven by a set of administrator-specified policies
that are stored along with the ADC. These policy files are
written in Python, and make use of the following assertion
functions:
a s s e r t t r u e (c o n d i t i o n , o p t i o n a l e r r o r m s g)
a s s e r t f a l s e (c o n d i t i o n , o p t i o n a l e r r o r m s g)
a s s e r t a p p d e p e n d e n c y (app , d name , d v e r s i o n)
a s s e r t n o t a p p d e p e n d e n c y (app , d name , d v e r s i o n)
a s s e r t a p p d e p e n d e n c y i n r a n g e (app , name ,\

lower , upper , e x c l u d e l o w e r , e x c l u d e u p p e r)

In order to keep all policy executions simple and stateless,
EAGER prevents policy code from accessing the file system,
network and most third-party Python libraries. Moreover, the
policy language prohibits storoage of global state.

If a governance check fails (i.e. assertion failure), EAGER
preempts the deployment process and returns an error. Other-
wise it proceeds with the application deployment by activating
the deployment mechanisms on the developer’s or adminis-
trator’s behalf. Additionally, all application metadata is saved
to the Metadata Manager, and if the application contains any
web APIs, they will be published to the API Discovery Portal
(ADP) and the API Gateway components. The API Discovery
Portal is a web GUI that enables application developers to
browse and discover available APIs, and obtain the necessary
API keys. The API Gateway intercepts API calls at runtime and
performs security, rate-limiting, and runtime policy checks.

In addition to the governance policy validations, EAGER
also performs a set of built-in sanity checks on all applications
and APIs deployed in the PaaS cloud. One of these checks
is the backwards compatibility check. If EAGER detects that
an API which is already deployed in the cloud is being
redeployed, it performs a comparison between the old and

latest specifications of the API to make sure that the developer
is not introducing a backward incompatible change to the API.
This comparison is based on our past and ongoing work related
to syntactic and semantic similarity of web APIs [4].

We implemented a prototype of EAGER using the App-
Scale open source PaaS cloud. Prototype was mostly imple-
mented in Python, while using MySQL as the underlying
datastore of the Metadata Manager. The prototype implemen-
tation did not require any code changes at the AppScale core.
However, we made configuration changes so that AppScale
treats EAGER components as built-in elements of the PaaS
cloud. As such, we are able to leverage the existing reliabil-
ity and high availability mechanisms of AppScale to make
EAGER components more reliable and high available. We
also made some minor code modifications to the AppScale
developer tools, so that when a developer attempts to deploy
an application into AppScale, the deployment request is routed
to the EAGER ADC.

III. EXPERIMENTAL RESULTS

In this section, we describe our empirical evaluation of
the EAGER prototype and evaluate its overhead and scaling
characteristics. To do so, we populate the EAGER database
(Metadata Manager) with a set of APIs, and examine the over-
heads associated with governing a set of sample applications
for varying degrees of policy specifications and dependencies.

Note that all the figures included in this section present
the average values calculated over three sample runs. The error
bars cover an interval of two standard deviations centered at the
calculated sample average. Also, our experiments have shown
that the absolute overhead introduced by EAGER is very small
compared to the overall time taken by AppScale to deploy an
application (100’s of milliseconds versus to 10’s of seconds).
Therefore, for clarity and ease of comparison, all the figures
presented in this section only show the absolute overhead of
EAGER.

Figure 2 shows that EAGER overhead grows linearly with
the number of APIs exported by a deployed application. This
scaling occurs because the current prototype implementation
iterates through the APIs in the application sequentially and
records the API metadata in the Metadata Manager. Then
EAGER publishes each API to the ADP and API Gateway.
This sequencing of individual EAGER events, each of which
generates a separate web service call, represents an optimiza-
tion opportunity via parallelization in future implementations.

At present we expect most applications deployed in cloud
to have a small to moderate number of APIs (10 or fewer).
With this API density EAGER’s current scaling is adequate.
In the unlikely case that an application exports 100 APIs, the
average total time for EAGER is under 20 seconds.

Next, we analyze EAGER overhead as the number of
dependencies declared in an application grows. For this ex-
periment, we first populate the EAGER Metadata Manager
with metadata for 100 randomly generated APIs. Then we
deploy an application on EAGER which exports a single API
and declares artificial dependencies on the synthesized APIs
in the Metadata Manager. We vary the number of declared
dependencies and observe the EAGER overhead.

Fig. 2. Average EAGER overhead vs. number of APIs exported by the
application.

Fig. 3. Average EAGER Overhead vs. number of dependencies declared in
the application.

Figure 3 shows the results of these experiments. EAGER
overhead does not appear to be significantly influenced by the
number of dependencies declared in an application. In this
case, the EAGER implementation processes all dependency-
related information via batch operations. As a result, the
number of web service calls and database queries that originate
due to varying number of dependencies is fairly constant.

Thus far we have conducted our experiments without
active governance policies in the system. We next investigate
policy validation. For this study, we consider three simple web
apps: guestbook.py which exports no web APIs, and simple-
jaxrs-app and dep-jaxrs-app which export two and one APIs,
respectively.

The overhead of policy validation depends on policy con-
tent. Since users may include any Python code (as long as
it falls in the accepted subset) in a policy file, evaluating a
given policy can take an arbitrary amount of time. Therefore,
in this experiment, our goal is to evaluate the overhead incurred
by simply having many policy files to execute. We keep the
content of the policies small and trivial. We create a policy
file that runs following assertions:

1) Application name must start with an upper case letter
2) Application must be owned by a specific user
3) All API names must start with upper case letters

We create many copies of this initial policy file to vary the
number of policies deployed. Then we evaluate the overhead
of policy validation on two of our sample applications.

Fig. 4. Average EAGER overhead vs. number of policies.Note that some
of the error bars for guestbook-py are smaller than the graph features at this
scale and are thus obscured.

Fig. 5. Average EAGER overhead vs. number of APIs in Metadata Manager.
Note that some of the error bars for guestbook-py are smaller than the graph
features at this scale and are thus obscured.

Figure 4 shows how the number of active policies impact
EAGER overhead. Interestingly, even large numbers of policies
do not impact EAGER overhead significantly. It is only when
the active policy count approaches 1000 that we can see a small
increase in the overhead. Even then, the increase in deployment
time is under 0.1 seconds.

This result is due to the fact that EAGER loads policy
content into memory at system startup (or when a new policy
is deployed), and executes them from memory each time an
application is deployed. Since policy files are typically small
(at most a few kilobytes), this is a viable option. The overhead
of validating the simple-jaxrs-app is higher than that of the
guestbook-py because it exports two APIs.

Next, we evaluate how EAGER scales when a large number
of APIs are deployed in the cloud. In this experiment, we pop-
ulate the EAGER Metadata Manager with a varying number
of random APIs. We then deploy various sample applications.
We create random dependencies among the APIs recorded in
the Metadata Manager to make the experimental setting more
realistic.

Figure 5 shows that the deployment overhead of the
guestbook-py application is not impacted by the growth of
metadata in the PaaS. Recall that guestbook-py does not export
any APIs nor does it declare any dependencies. Therefore
the deployment process of the guestbook-py application has
minimal interactions with the Metadata Manager. Based on

this result we conclude that applications that do not export
web APIs are not significantly affected by the accumulation
of API metadata in EAGER.

Both simple-jaxrs-app and dep-jaxrs-app are affected by
the volume of data stored in Metadata Manager, since they
export web APIs which need to be recorded and validated
by the Metadata Manager. The degradation of performance as
a function of the number of APIs in the Metadata Manager
database is due to the slowing of query performance of the
RDBMS engine (MySQL) as the database size grows. Note
that the simple-jaxrs-app is affected more by this performance
drop, because it exports two APIs compared to the single API
exported by dep-jaxrs-app. However, the growth in overhead is
linear to the number of APIs deployed in the cloud. Also, even
after deploying 10000 APIs, the overhead on simple-jaxrs-app
increases only by 0.5 seconds.

In summary, the current EAGER prototype scales well to
thousands of APIs. If further scalability is required, we can
employ parallelization and data storage optimizations. EAGER
adds a very small overhead to the application deployment
process, and this overhead increases linearly with the number
of APIs exported by the applications and the number of APIs
deployed in the cloud. Interestingly, the number of deployed
policies and declared dependencies have little impact on the
EAGER overhead. Based on this analysis we conclude that en-
forced deployment-time API governance can be implemented
in modern PaaS clouds with negligible overhead and high
scalability. Further, deployment-time API governance can be
made an intrinsic component of the PaaS cloud itself thus
alleviating the need for poorly integrated third-party API
management solutions.

IV. RELATED WORK

Our research builds upon advances in the areas of SOA
governance and service management. Guan et al introduced
FASWSM [5] a web service management framework for
application servers. Wu et al introduced DART-Man [6] a web
service management system based on semantic web concepts.
Our work is different from these past approaches and from
recent API management solutions [7], [8] in that EAGER
targets policy enforcement and we focus on doing so by
extending extant cloud platforms to provide an integrated and
scalable governance solution.

Lin et al proposed a service management system for clouds
that monitors all service interactions via special “hooks” that
are connected to the cloud-hosted services [9]. However,
this system only supports run-time service management and
provides no support for deployment-time governance. Kikuchi
and Aoki [10] proposed a technique based on model checking
to evaluate the operational vulnerabilities and fault propagation
patterns in cloud services. But this system provides no active
monitoring or enforcement functionality.

Other researchers have shown that policies can be used
to perform a wide range of governance tasks for SOA such as
access control [11], fault diagnosis [12], and management [13].
We build upon these past efforts and use policies to govern
RESTful web APIs deployed in cloud settings. Peng, Lui and
Chen showed that the major concerns associated with SOA
governance involve retaining the high reliability of services,

recording how many services are available on the platform to
serve, and making sure all the available services are operating
within an acceptable service level [14]. EAGER attempts to
satisfy similar requirements for modern RESTful web APIs
deployed in cloud environments. However, EAGER’s Metadata
Manager and ADP record and keep track of all deployed APIs
in a comprehensive manner. Moreover, EAGER’s governance
features “fail fast” to detect violations immediately.

V. CONCLUSIONS

In this paper, we describe EAGER, a model and a software
architecture that facilitates deployment-time API governance
as a cloud-native feature. EAGER supports comprehensive
policy enforcement, dependency management, and a variety of
other deployment-time API governance features. Our empirical
results show that EAGER adds negligible overhead to the
cloud application deployment process, and the overhead grows
linearly with the number of APIs deployed. Our future work
considers static and dynamic analysis that automates detection
of API specifications and dependencies.

REFERENCES

[1] “ProgrammableWeb – http://www.programmableweb.com.”
[2] C. Krintz, H. Jayathilaka, S. Dimopoulos, A. Pucher, R. Wolski,

and T. Bultan, “Cloud platform support for api governance,” in Intl.
Conference on Cloud Engineering, March 2014, pp. 615–618.

[3] C. Krintz, “The AppScale Cloud Platform: Enabling Portable, Scalable
Web Application Deployment,” IEEE Internet Computing, vol. Mar/Apr,
2013.

[4] H. Jayathilaka, C. Krintz, and R. Wolski, “Towards automatically esti-
mating porting effort between web service apis,” in Services Computing
(SCC), 2014 IEEE International Conference on, June 2014, pp. 774–
781.

[5] H. Guan, B. Jin, J. Wei, W. Xu, and N. Chen, “A framework for applica-
tion server based web services management,” in Software Engineering
Conference, 2005. APSEC ’05. 12th Asia-Pacific, Dec 2005, pp. 8 pp.–.

[6] J. Wu and Z. Wu, “Dart-man: a management platform for web services
based on semantic web technologies,” in Computer Supported Coop-
erative Work in Design, 2005. Proceedings of the Ninth International
Conference on, vol. 2, May 2005, pp. 1199–1204 Vol. 2.

[7] “WSO2 API Manager – http://wso2.com/products/api-manager/.”
[8] “Enterprise API Management & API Strategy – http://apigee.com/.”
[9] C.-F. Lin, R.-S. Wu, S.-M. Yuan, and C.-T. Tsai, “A web services status

monitoring technology for distributed system management in the cloud,”
in Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), 2010 International Conference on, Oct 2010, pp. 502–505.

[10] S. Kikuchi and T. Aoki, “Evaluation of operational vulnerability in
cloud service management using model checking,” in Service Oriented
System Engineering (SOSE), 2013 IEEE 7th International Symposium
on, March 2013, pp. 37–48.

[11] R. Bhatti, D. Sanz, E. Bertino, and A. Ghafoor, “A policy-based
authorization framework for web services: Integrating xgtrbac and ws-
policy,” in Intl. Conference on Web Services, July 2007, pp. 447–454.

[12] L. Li, K. Xiaohui, L. Yuanling, X. Fei, Z. Tao, and C. YiMin, “Policy-
based fault diagnosis technology for web service,” in Instrumentation,
Measurement, Computer, Communication and Control, 2011 First In-
ternational Conference on, Oct 2011, pp. 827–831.

[13] B. Suleiman and V. Tosic, “Integration of uml modeling and
policy-driven management of web service systems,” in Proceedings
of the 2009 ICSE Workshop on Principles of Engineering Service
Oriented Systems, ser. PESOS ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 75–82. [Online]. Available:
http://dx.doi.org/10.1109/PESOS.2009.5068823

[14] K.-Y. Peng, S.-C. Lui, and M.-T. Chen, “A study of design and
implementation on soa governance: A service oriented monitoring and
alarming perspective,” in Service-Oriented System Engineering, 2008.
SOSE ’08. IEEE International Symposium on, Dec 2008, pp. 215–220.

