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Abstract

MapReduce is a scalable and fault tolerant framework,
patented by Google, for computing embarrassingly par-
allel reductions. Hadoop is an open-source implementa-
tion of Google MapReduce that is made available as a
web service to cloud users by the Amazon Web Services
(AWS) cloud computing infrastructure. Amazon Spot
Instances (SIs) provide an inexpensive yet transient and
market-based option to purchasing virtualized instances
for execution in AWS. As opposed to manually control-
ling when an instance is terminated, SI termination can
also occur automatically as a function of the market price
and maximum user bid price. We find that we can signif-
icantly improve the runtime of MapReduce jobs in our
benchmarks by using SIs as accelerators. However, we
also find that SI termination due to budget constraints
during the job can have adverse affects on the runtime
and may cause the user to overpay for their job. We de-
scribe new techniques that help reduce such effects.

1 Introduction

MapReduce is a general computational model that orig-
inated from the functional programming paradigm for
processing very large data sets in parallel. A scalable,
fault tolerant approach of MapReduce has been popular-
ized and recently patented by Google [5, 6]. This im-
plementation operates on data in the form of key/value
pairs and simplifies how large-scale data reductions are
expressed by programmers. The system automatically
partitions the input data, distributes computations across
large compute clusters, and handles hardware and soft-
ware faults throughout the process. Since the emergence,
use, and popularity of MapReduce for a wide range of
problems, many other implementations of the process
have emerged. The most popular of which is Hadoop [7],
an open-source implementation of Google MapReduce.
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Hadoop is currently in use by Yahoo!, Facebook, and
Amazon, among other companies.

Given its ease of use and amenability to parallel pro-
cessing, MapReduce is employed in many different ways
within cloud computing frameworks. Google employs
its MapReduce system for data manipulation within its
private compute cloud and AppScale, the open-source
implementation of the Google App Engine (GAE) cloud
platform, exports Hadoop Streaming support to GAE ap-
plications [3]. The Amazon Web Services cloud infras-
tructure makes Hadoop and Hadoop Streaming available
as a web service called Elastic Map Reduce [1].

In December of 2009, Amazon announced a new pric-
ing model for AWS called Spot Instances (SIs). SIs are
ephemeral virtual machine instances for which users pay
for each completed runtime hour. A user defines a maxi-
mum bid price, which is the maximum the user is willing
to pay for a given hour. The market price is determined
by Amazon, which they claim is based on VM demand
within their infrastructure.

If a VM is terminated by Amazon because the market
price became higher or equal to the maximum bid price,
the user does not pay for any partial hour. However, if
the user terminates the VM, she will have to pay for the
full hour. Furthermore, a user pays the market price at
the time the VM was created, given that it survives the
next hour. The cost of the hours that follow may differ
depending on the market price at the start of each con-
secutive hour.

SIs are an alternative to on-demand and reserve VM
instances in Amazon. On-demand instances have a set
price for each hour that does not change. Reserve in-
stances have a cheaper per-hour price than both on-
demand instances and SIs, but the user must lease the
VMs for long periods of time (1 or 3 year terms). SIs
therefore provide inexpensive computational power at
the cost of reliability (variable and unknown VM life-
time). The reliability is a function of the market price
and the users maximum bid (limited by their hourly bud-



get).
In this work, we investigate the use of SIs for MapRe-

duce tasks. SIs fit well into the MapReduce paradigm
due to its fault tolerant features. We use SIs as accelera-
tors of the MapReduce process and find that by doing so
we can significantly speed up overall MapReduce time.
We find that this speedup can exceed 200% for some
workloads with an additional monetary cost of 42%.

However, since SIs are less reliable and prone to ter-
mination, faults can significantly impact overall comple-
tion time negatively depending on when the fault occurs.
Our experiments experience a slow down of up to 27%
compared to the non-SI case, and 50% compared to an
accelerated system in which the fault does not occur.

Since the likelihood of termination is dependent on the
market price of the VM and the user defined maximum
bid price, we investigate the potential benefit and degra-
dation (cost of termination) of using SIs for MapReduce
given different prices. We also use the pricing history
of Amazon SIs to determine how much to bid as well as
how many machines to bid for. By using this characteri-
zation for a given bid and market price, we compute ex-
pected VM lifetimes for users. Such a tool enables users
to best determine when to employ SIs for MapReduce
jobs.

2 Background

We first briefly overview the Hadoop MapReduce pro-
cess. Using Hadoop, users write two functions, a map-
per and a reducer. The map phase takes as input a file
from a distributed file system, called the Hadoop Dis-
tributed File System (HDFS), and assigns blocks (splits)
of the file as key-value pairs to mappers throughout the
cluster. HDFS employs replication of data for both fault
tolerance and data locality for the mappers. Mappers
(map tasks) consume splits and produce intermediate
key-value pairs which the system sorts and makes avail-
able to the reducers. Reducers (reduce tasks) consume
all pairs for a particular key and perform the reduction.
Reducers then store the resulting output to HDFS. The
result may be a final computation or may itself be an in-
termediate set of values for another MapReduce tuple.

Each machine is configured with a maximum num-
ber of mapper and reducer tasks slots. The number of
slots depends upon the resources available (i.e. number
of CPU cores and memory) as well as the type of job be-
ing run (CPU-bound versus IO-bound). The master runs
a Job-Tracker process which assigns work to available
worker slots. Slave nodes run Task-Trackers which have
their task slots assigned work as it becomes available by
the Job-Tracker. Each Task-Tracker can run a custom
configuration. It can be designated to run only mappers,

only reducers, or, as is typical, some combination of the
two.

Hadoop tolerates failures of a machine through the
use of replication. Output data can be regenerated given
there are live replicas of the input splits. The replica-
tion policy for Hadoop is rack-aware and will place one
copy on the same physical rack and the second off-rack.
Hadoop also tolerates bad records. Records which cause
exceptions are retried a default of three times and then
skipped to ensure the entire job is not halted due to a sin-
gle bad record. This issue can come about when buggy
third-party software is used.

Hadoop uses heart-beat messages to detect when a ma-
chine is no longer operable. Data which was lost due to a
failure is replicated to ensure that the configured number
of replicas exist.

The time for a MapReduce job in Hadoop is dependent
on the longest running task. Tasks that are few in number
and those that continue execution once most others have
completed are called stragglers. The system can specu-
latively execute stragglers in parallel using idle task slots
in an attempt to reduce time to completion. The authors
in [11] provide details on the impact of stragglers in vir-
tualized environments.

3 Data Analytic Cloud

In this section we describe what we envision to be a data
analytic cloud which uses MapReduce for analyzing data
and the cost associated with running such a service. The
scenario which this paper focuses on relies on a provider
to host their large data sets in a public cloud. The data
is stored in a distributed file system running on a sub-
set of leased VMs in the cloud. In addition, the provider
may provision the data analytic engine required for pro-
cessing or querying the data. In this paper we consider
the MapReduce framework as that engine, although this
work also carries to using higher level query languages
such as Pig [9] and Hive [10]. Users submit MapRe-
duce jobs, and the provider charges the user an hourly
rate, along with the option to speedup their job at an ad-
ditional cost. In order to maximize profit, the provider
uses the cheapest source of computation available. Ama-
zon’s EC2 SI pricing is competitive in this area, being as
low as 29% of the cost of an EC2 on-demand instance.

Amazon’s Elastic MapReduce is another option avail-
able, giving users an easy and cost effective way to an-
alyze large data sets. Data, at the time of writing this
paper, is free to upload into their Simple Storage Ser-
vice (S3) and free to transfer within EC2, but transfer-
ring out is $0.15 per GB and storage per month per GB
is $0.15. A 1TB set of data cost $150 per month to store,
and $150 per transfer out. There is also an additional
cost for PUT and GET request for S3 at $0.01 per 1000



requests. Elastic MapReduce is spawned with a user de-
fined number of instances. The user only pays for the
number of VM hours used at an additional 17.6% charge
of the on-demand VM instance price.

The minimum cost of hosting a 1TB data set in a
Hadoop cluster (with a 3 year term) using just local
instance disk space, with three times replication, costs
$194 dollars a month (20 small instance VMs with
160GB each for a total of 3.2TB of distributed storage).
The Elastic MapReduce service with S3 is more afford-
able if the total amount of cost for VM instances is less
than $44 dollars a month, which affords 440 VM hours
a month or 22 hours of processing for 20 small VM in-
stances. The disadvantages of storing the data in S3 is
that the MapReduce cluster loses the data locality a local
HDFS cluster provides.

4 Analysis

We next investigate how best to employ Hadoop within a
cloud infrastructure for which virtual machine instances
are transient. Our goal is to investigate how best to do so
given the Spot Instance (SI) option offered by Amazon
Web Services (AWS). SIs offer a cost effective alterna-
tive to on-demand instances since the cost of their use
is dependent on market-based supply and demand of in-
stances. We find that SIs can be as low as 29% of the
cost of on-demand instances. SIs trade off termination
control for such cost savings. SIs are good for short run-
ning jobs that can tolerate termination, i.e. faults in the
execution process. MapReduce is an ideal candidate for
SIs since we can use additional nodes to accelerate the
computation.

However, since the time to complete a MapReduce
process is dependent upon how many faults it encoun-
ters, we must also consider SI termination. Since SI ter-
mination is dependent upon market price and maximum
bid price, we are interested in using this information to
estimate the likelihood of termination.

To enable this, we consider bid prices independent
of market prices since there is very limited information
available from Amazon as to how they determine the
market price. Amazon does not reveal bids by users or
the amount of demand. Table 1 shows the pricing of dif-
ferent instance types in the western US region. The SI
pricing is an average of prices since they were first in-
troduced in December of 2009 till March of 2010. The
small instance type uses a 32-bit platform, while the rest
are 64-bit. An EC2 compute unit is equivalent to a 1.0 to
1.2 GHz 2007 Xeon or Opteron processor [1].

4.1 Spot Instance Characterization

We model the SI lifetimes by building a Markov Chain
with edges being the probability of price transitions for
each hour interval. Given the transitional probabilities
we can calculate n-step probability using a variant of the
Chapman-Kolmogorov equation:

P (i, b, n) =
∑

j 6∈B

MijP (j, b, n − 1) (1)

where

p(i, b, 0) =

{

0 if i ∈ B
1 if i 6∈ B

(2)

The starting market price at the time of VM creation isi
andn is the number of time unit steps. The set of prices
which are over the bid price,b, are in setB. Mij is
the probability matrix of a price point fromi to j. Pric-
ing history was collected over time using Amazon’s EC2
tools and can be attained from [4].P (i, b, n) is solved re-
cursively, where each step depends on the previous one.
The base case is a binary function of whether or not the
bid price is greater than the market price.

Figure 1 shows the probability of a VM running for
n hours. The figure has different maximum bid prices
given the market price being $0.035 at the time of start-
ing the instance. As the maximum bid decreases, the
probability of the SI staying up decreases as well. Some
small increments in the bid price can give much larger
returns in probabilities as can be seen when increment-
ing the bid price from $0.041 to $0.043, whereas other
increments give very little return ($0.037 to $0.039). A
SI in this case has more than an 80% chance of making
it past the first hour given the market price was less than
the bid price at the start of the VM. Bids that are less than
or equal to the market price at the start of the VM would
stay at 0% probability ($0.035 for example which is not
viewable because it is directly overlaid on the x-axis).

Figure 2 has two sets of data for comparison. The
data set labeled ”A” is from mid-January 2010 to mid-
March 2010, while the data labeled ”B” is from mid-
March 2010 to the end of May 2010. A comparison of
the two models shows that the past pricing model is a
good indicator of future pricing. It should be noted that
data prior to mid-January was not used in building the
model as shown in Figure 1 because as reported in [2]
there was a bug in the pricing algorithm prior to this date
which has since been fixed. The bug’s impact can be
seen in the pricing visualized in [4] where prices stabi-
lized post January 15th. This explains the smaller range
of prices between Figure 1 and Figure 2.

Using Equation 1, we can calculate the expected life-
time, l, of a VM given a starting market price,i, a given



Average On-Demand EC2 Compute Memory Storage
Instance Type Price StDev Price Units (GB) (GB)
m1.small $0.0399 0.001327 $0.095 1 1.7 160
c1.medium $0.0798 0.002551 $0.190 5 1.7 350
m1.large $0.1673 0.04163 $0.380 4 7.5 850
m2.xlarge $0.2397 0.007489 $0.570 6.5 17.1 420
m1.xlarge $0.3197 0.009045 $0.760 8 15 1690
c1.xlarge $0.3233 0.02469 $0.760 20 7 1690
m2.2xlarge $0.5593 0.01756 $1.340 13 34.2 850
m2.4xlarge $1.1164 0.03288 $2.68 26 68.4 1690

Table 1: Prices of different VM instances from the US west region. Instances labeled with ”m1” are standard instances,
”m2” are high-memory instances, and ”c1” are high-CPU instances. EC2 compute units are based on CPU cores and
hardware threads. All instances here are for the Linux operating system. Costs are obtained from [1].
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Figure 1: The probability of a small VM instance stay-
ing operational over time given a starting price of $0.035
with varying bids.
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Figure 2: A comparison for verifying the pricing and life-
time model of a small VM instance given a starting price
of $0.038 and varying bids.

bid, b, and a max run time ofτ time units:

E(l) =

τ
∑

n=1

nP (i, b, n) (3)

We can determine the amount of expected work a VM
should achieve given the lifetime of a VM. This value
can be used in the planning of backing up data and hence
reduce the impact of failure. Moreover, it can be used
in bidding strategies to ensure the greatest amount of SIs
can be requested without fear of going over your maxi-
mum allocated budget.

4.2 Cost of Termination

We define the cost of a termination as the amount of time
lost compared to having the set of machines stay up until
completion of the job. The minimum cost is

δ + (fM/s)/(s − f) (4)

where the total time taken to complete the mappers is
M . The total number of mappers is a function of block
size and the size of the input file. The total number of
slaves iss, the number of machines terminated isf , and
the time spent waiting for a heart-beat timeout to occur
while useful work could be done isδ. Early termination
of a machine into the map phase allows for an overlap
of when the termination is detected and the rest of the
cluster is doing useful map work (i.e. no map slot goes
idle). Work is equally divided given the machines are
homogeneous.

Termination also results in the loss of reducer slots if
that machine was configured so. This may or may not be
an additional cost of failure depending on the job con-
figuration which can specify the number of total reduc-
ers. This potential cost is not reflected in Equation 4 due



to its application specific and configuration specific na-
ture. Termination after all the mappers have finished,
sees the most expense of the fault detection, forcing a
re-execution of all mappers completed on the terminated
machine, even those which have been consumed by re-
ducers and will not be consumed again.

4.3 Evaluation

Our initial experiment consists of five small-sized on-
demand instances on EC2 with one node as the master,
and four as slaves. The slaves were configured with two
map slots and one reduce slot. Additional EC2 SIs which
are added for speedup also have the same configuration.
Each data point is an average of five trials. The applica-
tions are wordcount, pi estimation, and sort. Wordcount
counts the occurrence of each word of an input file. Pi
estimation uses a quasi-Monte Carlo procedure by gen-
erating points for a square with a circle superimposed
within. The ratio of points inside versus outside the circle
is used to calculate the estimation. Sort uses the MapRe-
duce framework’s identity functions to sort an input file.

Figure 3a has the speedup of each job with the number
of SIs varied. The speedup is normalized to the origi-
nal HDFS cluster configuration. Speedup is linear for all
three applications. The price for speedup is in Figure 3b
where each additional SI cost $0.04 per hour. Each job
ran for less than one hour, therefore had the job been run-
ning forn hours, the y-axis would be a multiple ofn.

Our second experiment was using five machines as the
HDFS cluster, and one machine as an accelerator. Fig-
ure 4 has the speedup breakdown of adding an accel-
erator as well as the relative slowdown when the SI is
terminated halfway through execution. The detection of
machine faults was set to 30 seconds to minimizeδ for
these experiments, where the default is 10 minutes. The
default delay is set sufficiently large for the purpose of
distinguishing between node failure and temporary net-
work partitioning and had our experiments used the de-
fault valueδ would have grown accordingly.

For Figure 4 the mapper portion is from when the first
mapper begins and the last mapper ends. The shuffle pe-
riod is where map output is fetched by reducers. This
phase runs in parallel with mappers until the last map-
per output is fetched. Reducers fetch and merge-sort the
data as map output becomes available. They finish merge
sorting the remaining intermediate data and proceed to
run the reduce procedure once the shuffle phase is com-
plete. The reduce procedure does not start until all map
output is accounted for.

As expected, we see speedup for all applications with
the addition of an SI. Yet the cost of losing the accelerator
actually slows down the application sufficiently, to the
point where it was faster with the original setup. If the

SI ran longer than an hour, it would have cost the user
money with no work to show for it. On the other hand, if
the SI was terminated before the first complete hour, no
money is lost. The completion time is hampered in both
cases. Section 5 presents the solution we are pursuing to
alleviate this problem.

The addition of SIs improves the completion time of
the mappers, but may not improve the completion time of
the reduce phase. Many applications have a sole reducer
at the end of the map phase because it requires a holistic
view of the map output. Additionally, the runtime of the
reducer is dependent on the amount of intermediate data
generated. The amount of intermediate data is subject to
the MapReduce application, and the input data. The use
of a combiner also reduces the amount of intermediate
data, which is invoked at the end of a mapper performing
an aggregation of mapper output. Our wordcount bench-
mark uses a combiner which essentially does the same
job as the reducer at a local level. The aggregated map
output helps to decrease the reducer workload in both the
amount of data which must be fetched and processed.

5 Discussion

Had we kept adding SIs to the system in our first experi-
ment, we would expect to get a diminishing return in the
amount of speedup an application sees. For each SI, data
must be streamed to it from the HDFS cluster which is
hosting the input file. Moreover, there may be a tipping
point in which the HDFS cluster is overburdened with
too many out going data transfers, and the addition of an
SI would result in a slowdown. We are pursuing discov-
ering where this breaking point is, and what the ratio of
HDFS VMs to SI VMs are for different applications.

We also ran experiments with accelerator nodes only
running mappers. Our first notion was that mapper out-
put which was consumed by a reducer would not be
re-executed in case of a failure. This assumption was
wrong. All mappers are re-executed on a machine re-
gardless of whether it will be consumed again. Reducer
output is already stored in HDFS with default replica-
tion of three. Check-pointing the map functions can be
done by replicating the intermediate data as done in [8].
Other methods include saving the intermediate data to
Amazon’s S3 or EBS. The current Hadoop framework
can also be modified to use tracking data on which map-
pers have been consumed to prevent re-execution during
a fault.

Future work includes analyzing the cost-to-work ra-
tio of different VM instance types. SIs can be used as
probes for determining the best configuration. But this
is only after fixing the availability of mapper output af-
ter termination, since we want to be able to restart the
Task-Trackers with the optimal discovered configuration.
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The optimal configuration consists of having the most
amount of mappers and reducers without them hitting
performance bottlenecks due to sharing CPU, disk, net-
work, and memory resources. Without the ability to save
their intermediate data, the probes would become liabili-
ties for wasted computation. Furthermore, we plan on in-
vestigating the use of heterogeneous configurations and
instance types where a portion of the VMs only run re-
ducers or mappers.

Additional future work includes analyzing the effects
of staggering max bid prices across a set of SI VMs. In
such a case it would be possible to only lose portions
of accelerators at a time, essentially giving some VMs
priority.

The nature of SI billing also leads to an interesting
discussion on how to maximize utilization. An SI will
be billed for the entire hour if terminated by the user
even though it was only used for a partial hour, while no
billing results if the VM ran for a partial hour and Ama-
zon terminates the instance due to a rise in the current
market price. Users may want to terminate an instance
after an hours time in order to only pay for a full hour
usage rather than pay for a partial hour, but this is only
wise when the framework can recover from failure with-
out significant adverse affects on the completion time.

6 Conclusion

We have presented SIs as a means of attaining perfor-
mance gains at low monetary cost. We have character-
ized the EC2 SI pricing for informed decisions on mak-
ing bids given the current market price. Our work has
shown that due to the nature of spot instances and their
reliability being a function of the bid price and market
price, MapReduce jobs may suffer a slowdown if in-
termediate data is not stored in a fault tolerant manner.
Moreover, a fault can cause a job’s completion time to
be longer than having not used additional SIs while po-
tentially costing more.
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