
EXFed: Efficient Cross-Federation with
Availability SLAs on Preemptible IaaS Instances

Alexander Pucher, Rich Wolski, and Chandra Krintz
Department of Computer Science

University of California, Santa Barbara
{pucher, rich, ckrintz}@cs.ucsb.edu

Abstract—Private IaaS clouds offer the benefits of cloud
computing on-site but their efficiency is limited by capacity
constraints during peak times. We present EXFed, an efficient
cross-federation system for IaaS clouds that “ships” jobs between
clouds and provides ahead-of-time certainty about resource
availability despite retaining individual clouds’ ability to preempt
foreign workload after admission. Clouds participating in the
federation remain in control of their local resources at all times
and exclusively use a predictable tier of preemptible instances to
run federated jobs. This predictable tier is enabled through a new
method that provides an SLA on the preemption probability of
groups of instances. The SLA is learned statistically from cloud
utilization and data transfer rates in the recent past. We deploy
EXFed across multiple data centers and evaluate its robustness
under realistic and adverse scenarios with production traces
recorded from industrial ”big data” clouds.

I. INTRODUCTION

The broad availability of open-source Infrastructure-as-
a-service (IaaS) cloud frameworks has changed how pri-
vate Information Technology (IT) infrastructure is built and
managed. Private cloud technologies such as OpenStack [1],
Eucalyptus [2] and CloudStack [3] enable companies and
institutions to deploy IaaS clouds on-site to store data and
provision compute resources on-the-fly for a wide range of
applications such as web services and “big data” analytics.
Similar to public clouds such as Amazon’s AWS [4] and
Google Cloud Platform [5], private IaaS clouds provide access
to their resources under the terms of Service-Level-Agreements
(SLAs) that make service quality “guarantees” to resource
users. Because the cloud abstraction intentionally obscures the
underlying resources from the user (IaaS machines, network,
and storage are “virtual”), users must reason about resources
in a cloud (public or private) using the terms of the SLA.

Private cloud deployments are often used by organizations
with security, regulatory, or cost constraints that make their
public cloud alternatives inappropriate. Because the resource
pool available in a private cloud is often significantly smaller
than in a public cloud, some of the scaling benefits that
characterize cloud computing may be lost – in particular for
big data workloads generated by frameworks such as Apache
Hadoop [6] or Apache Spark [7]. Moreover, this resource
scarcity may be intermittent. Thus private cloud operators
often overprovision their clouds to absorb the “worst case”
aggregate demand for resources. Further, in large organizations
with many operational units, the cloud or clouds may be par-
titioned so that each suborganization is “in charge” of its own
resources (e.g. for budgeting purposes). This overprovisioning

each cloud or cloud partition exacerbates the problem and leads
to significant capital outlay and low utilization.

One way to address the issue of under-utilization is
workload federation. We take inspiration from past work on
federation and cycle harvesting [8] in computational grids and
build a system that opportunistically “bursts” requests onto
remote idle resources if the local system is out of capacity.
Grids and clouds, however, have different usage models –
grids provide high throughput for queued batch jobs on a
best effort basis, whereas clouds offer immediate response to
user requests with extensive upfront guarantees about service
quality (SLAs). More specifically, the grid’s enforcement of
local policy via job preemption after admission conflicts with
the cloud’s need to make guarantees about resource availability
ahead of time.

In this paper, we present EXFed, an efficient cross-
federation system for IaaS clouds that “ships” jobs between
clouds, provides certainty about resource availability ahead
of time, and retains the individual clouds’ ability to pre-
empt federated workload after admission. Specifically, we
investigate how we can enable a “predictable” preemptible
service class of compute instances by providing ahead-of-
time availability guarantees, which serves as the basis for
opportunistic workload federation across multiple IaaS clouds.

To make a preemptible service class useful for federation,
EXFed provides a performance SLA to its users that

• provides a statistical guarantee on the preemption
probability of federated workload, and

• considers the latency associated with moving both
computation and data of federated instances to and
from the execution site.

Specifically, EXFed provides an upper bound on the pre-
emption ratio (the fraction of preempted instances relative to
accepted instance requests) for federated workload with a user-
specified execution time bound (lifetime bound). Consequently
1.0 minus this fraction serves as a probabilistic “guarantee”
that a user’s federated instances will execute for at least the re-
quested lifetime once accepted by the remote cloud. The cloud
will not accept a request (i.e. the request will “fail fast”) if the
minimum lifetime cannot be assured probabilistically. Cloud
administrators can set the target fraction (i.e. the maximum
probability of a preemption) for the preemptible service class
so that users can reason about the use of this service class
based on its SLA.

Our results show that EXFed is able to maintain a prob-
abilistic SLA on the preemption ratio of federated instances
across a broad spectrum of real-world, computationally inten-
sive and big data workloads, even under adverse conditions
and tight capacity constraints. Finally, we show that EXFed
scales with additional capacity and adapts to changes in cloud
configuration and behavior.

II. METHOD

To represent the combination of computing and storage
requirements in a workload, we define a job as a homogeneous
group of instances and an associated data set in the cloud’s
object store (e.g. OpenStack Swift [9]). The goal, then, is to
predict whether each job that is launched in the preemptible
service class will

• transfer its inputs to the target execution site,

• execute for a lifetime specified with the job, and

• transfer any results back to its originating site

before locally generated work at the target site preempts it.
EXFed must ensure that the fraction of incorrect predictions
(i.e. the prediction error) is below a threshold set by the cloud
administrators for the service class.

We define the preemption ratio of federated jobs as P
A ,

where A is the number of jobs submitted and admitted to
a remote cloud for federation, and P is the number of jobs
in A that are preempted (terminated) by the remote cloud
before completion. Thus, the quantity 1.0 − P serves as
the “success probability” associated with the execution of
a federated jobs. Note that in contrast to existing systems
implementing preemption [8], [10], our model allows a user to
reason about the how long each instance will execute before it
can be preempted (with a specific probability estimate). Thus,
the user’s trade-off between preemptible and non-preemptible
service tiers is quantifiable ahead-of-time.

To enable ahead-of-time certainty for federated jobs, we
introduce admission control that employs a predictive model
for deciding whether to accept a request for a preemptible job
(a group of instances and data). Admission control is tasked
with accepting or rejecting incoming native and foreign job
requests based on available capacity without queuing. Native
jobs must be accepted as long as (a) sufficient spare capacity
is available or (b) local capacity can be made available by
terminating foreign jobs. Federated jobs are admitted only if
sufficient spare capacity is available (a) to fit the requested job
and (b) to guarantee probabilistically that the remaining spare
capacity is sufficient to absorb future native requests without
triggering preemption.

We assume that each foreign job requires inputs from the
originating cloud’s object store and that outputs from the job
must be returned to the originating cloud. Further, we assume
that there is sufficient storage in the object store of the cloud
accepting a federated job to hold that jobs’ inputs and outputs
temporarily. As a consequence, preemptions are only triggered
due to instance capacity constraints, not storage shortfall.

Key to our approach is that federated job requests come
with a user-specified upper bound on the lifetime for the job’s
execution duration until completion. A cloud only accepts a

federated job (admits a preemptible job) if its upper bound on
lifetime is shorter than the lower bound estimate of the job’s
“time-to-preemption”, subject to a confidence level defined in
the cloud’s SLA. Further, SLAs in our system are defined upon
job submission and are immutable for the lifetime of a job.

A. Estimating Native Load Increase

The intuition behind our admission control mechanism is
that the job preemption probability depends on the current
load level of the cloud as well as predictable changes of the
load level in the near future. For example, when the cloud’s
load is near capacity, new native workload is more likely to
cause a preemption of foreign workload than if the cloud is
relatively under utilized. Notice that it is only the arrival of
new native instances (i.e. a load increase) that can trigger the
termination of preemptible instances – foreign instances will
simply be rejected by admission control if there is insufficient
spare capacity to host them.

When the admission control algorithm considers a new
federated job request, it requires a prediction of the time until
spare capacity is exhausted (and at least one additional native
instance arrives, triggering preemption). We refer to this time
estimate as the “time-to-preemption”.

However, for responsiveness and scalability reasons, rather
than making this estimate on a per-request basis, EXFed
continuously computes the time until there will be a capacity
shortfall for different possible federated job sizes. To do so,
we sample the history of total capacity utilization of native
instances at regular intervals. From each sample, we trace
forward to identify the point at which the aggregate utilization
of non-preemptible instances (native instance starts without
compensating native instance terminations) increases by a
fixed-size step (e.g. one instance slot). We repeat this tracing
procedure for each possible magnitude of load change (two
slots, three slots, and so on) and tabulate the results as a set
of empirical distributions. This database of predictions is con-
stantly updated but queried asynchronously by the admission
control component. When EXFed considers a new request for a
federated job, it computes the time-to-preemption by retrieving
the distribution corresponding to the load increase that is equal
to the current level of available spare capacity (including the
new job) plus one (the hypothetical native instance triggering
preemption) from the table and uses a quantile corresponding
to the SLA from this distribution as the estimate.

B. Admission Control

For every admission decision, the admission control com-
ponent runs a discrete-event simulation in which there are
two types of events: the termination of a foreign job, and
the increase in occupancy of the cloud by native workload.
It generates a prediction of the available spare capacity over
time taking into account the remaining lifetimes of the current
foreign job set and makes decisions based on whether new
requested foreign job will “fit” within the available capacity.
Note, that in addition to lifetimes, EXFed also estimates
overheads for transmitting data between federating clouds to
determine whether a job can execute in time.

When EXFed considers admitting a new foreign job, it first
computes the number of ”slots” – units of cloud allocation –

that are occupied by the current set of foreign jobs running in
the cloud, and the number of slots that are occupied by native
workload. If there are enough free slots to host the new foreign
job, it then, hypothetically, adds the job to the set of foreign
jobs in the cloud (otherwise the job is rejected).

We next predict a lower bound on the time until the
number of unused slots will be consumed by native work with
a probability of 1.0 minus the SLA preemption probability
(e.g. 0.95 for a preemption probability of 0.05). If the new
foreign job’s duration (i.e. its lifetime plus expected startup
and teardown overheads) is greater than or equal to this bound,
the job is rejected.

Otherwise our system sorts the foreign jobs by their termi-
nation times (which were computed from upper bounds when
the jobs were admitted) and “rolls” time forward from one job
completion to the next. Each time a foreign job terminates
the admission control component again predicts the bound
on the time until native workload will exhaust available slot
capacity. If the remaining duration of the new job, at each
of these termination points, is greater than the prediction, the
new job is rejected. If there is no point in time at which the
simulation predicts that native workload will exhaust capacity
(and thereby cause a preemption) between the time the new
foreign job is submitted and the end of its duration, the new
foreign job is admitted.

III. RESULTS

Our evaluation attempts to answer three primary questions
about EXFed’s new approach to cloud federation, which pro-
vides an ahead-of-time guarantee on the preemption probabil-
ity of federated jobs executed on preemptible resources:
• Is it feasible to enforce an upper bound SLA on the

preemption ratio of federated jobs with real-world
workloads?

• Does the method scale with additional capacity to a
federation of clouds while maintaining its guarantees?

• How sensitive is the method to properties of real-
world workloads and adverse degrees of resource
contention?

A. Experimental Methodology

To answer the three questions, we emulate various fed-
eration settings via faster-than-realtime and smaller-than-
production replay of workloads recorded from production
clouds, using real-world private clouds equipped with our
federation extensions. We choose this empirical approach over
a simulation approach so that the experiments take into account
the overheads (modeled and unmodeled) of working clouds.
That is, while the workload is a replay of production workloads
(sped up from their original durations), the clouds are real. The
experiments transfer data across a wide area network between
federating clouds, launch and terminate instances, and retrieve
data representing generated results.

We install Eucalyptus 4.1 from repository packages on
CentOS 6.7. Due to the long duration of the experiments we
use several different clusters located at CloudLab [11] APT
Utah, CloudLab Clemson, and UC Santa Barbara with 4-8
physical hosts each.

TABLE I: Production traces. Types are batch (B), batch
pipelined (P), batch seasonal (S), long-running service (L), and
mixed (M).

num num total trace average work
reqs insts data dur inst dur type

segment (TB) (wks) (hours)
DS-A 1 2.3k 3.0k 1100 2 2.2 B, S
DS-A 2 1.5k 2.0k 50 2 2.9 B, S
DS-B 1 1.3k 4.2k 80 12 2.2 B, P
DS-B 2 1.5k 2.4k 180 12 9.3 M
DS-C 1 1.2k 2.8k – 30 10.0 M
DS-C 2 0.5k 1.9k – 30 45.5 B, L

B. Production Trace Data Sets

Our evaluation uses three groups of anonymized, real-world
traces recorded from production systems, which we obtained
from industry collaborators (Table I). Each represents two
separate sub-traces with jobs recorded from “big data” clusters.
They span multiple months in real time and contain mixed
workloads from multiple cloud users and software frameworks.
For our replay we extract long-running jobs over 1 hour in real-
time duration, scale them to fit our test bed, speed up replay
by a factor of 50x, and use separate parts of the traces for
model training and evaluation.

During our development, DS-C was available for testing
and should be considered in-sample (train-train). Part of DS-
A was available during development as well, although the
evaluation uses a more recent trace segment that was unavail-
able during our development. DS-B became available only
after we completed the development of our prototype and thus
represents a true out-of-sample test (train-test).

C. Evaluation Metrics

We consider three primary metrics to evaluate EXFed:
the preemption ratio of federated jobs, the rejection ratio of
requests, and the federation ratio of work. Preemption ratio
measures the effectiveness of SLA enforcement:

preemption =
|federated jobs preempted|
|federated jobs accepted|

This metric captures the fraction of pre-mature terminations of
federated jobs (groups of instances) that have been accepted
by the admission controller and launched in the system.

Rejection ratio measures the efficacy of federation in
accepting incoming user requests:

rejection =
|jobs rejected|
|jobs requested|

A rejected request has been rejected by the local cloud due to
a lack of capacity and by the remote clouds in the federation
due to the inability to guarantee the requested SLA preemption
ratio. We only count jobs that are rejected first as native
requests and subsequently as federated requests once.

The federation ratio represents the overall mutual gain
from federation and measures the amount of work that results

Fig. 1: Federating workloads between two capacity-constrained
clouds without SLA enforcement for 3 production traces for
clouds with different capacities. Federation enables more jobs
at the cost of more preemptions.

Fig. 2: Federating workloads between two capacity-constrained
clouds with SLA enforcement enabled. Admission control
rejects some jobs to guarantee a 0.05 upper bound on the
preemption ratio.

from access to remote capacity (completed jobs on remote,
preemptible instances).

federation =
work(federated jobs completed)

work(jobs completed)

The ratio uses the aggregate time spent by instances of
successfully completed jobs. It divides the aggregate time
of completed federated jobs by the aggregate time of all
completed jobs (including federated jobs). This time includes
the amount of time spent to set up instances, wait for data
transfers, execute the actual computation tasks, and tear down
the instances. Time spent by preempted jobs is not included.

D. Federation Baseline (no SLA)

Figure 1 shows six baseline experiments, replaying our
three production data sets on two different, real cloud con-
figurations of EXFed each – without SLA-enabled admission
control (i.e. without prediction or capacity planning). In these
experiments, admission of federated jobs is based purely on
available spare capacity (i.e., all foreign job requests are
accepted if, at the time of their arrival, there is sufficient
capacity to host them). Each group of columns on the x-
axis represents one experiment, executing the sub-traces of
a data set concurrently on two clouds linked via two-way
federation. The category names describe the experimental
setup for each data set, e.g. “DS-A”, and the size of the clouds
in the federation, e.g. “32-32” which indicates that each cloud
employs 32 cores each.

We replay the three production data sets on two different
cloud configurations. The first configuration tightly constrains
the amount of available resources to show the federation’s
behavior under adverse conditions. The second configuration
provides additional capacity as in a an overprovisioned (cost-
inefficient) setting. On the y-axis we plot our three perfor-
mance metrics: the preemption ratio (red), the rejection ratio of
requests overall (blue), and the ratio of successfully federated
(additional completed) work (green).

The figure shows how the relationship between workload
and capacity impact each metric. The degree to which ad-
ditional capacity affects EXFed’s baseline federation activity
and the preemption ratio depends on the workload. DS-A

has a similar federated work ratio in both configurations. As
such, extra capacity is devoted relatively equally to federated
and native jobs. For DS-B, extra capacity hosts more native
workload (the rejection ratio and the federation ratio both
decrease). For DS-C, the added capacity is used primarily to
host federated workload (the rejection ratio decreases but the
federation ratio increases).

E. Federation With SLA Guarantees

Figure 2 shows the results for the same setup on real clouds
as the previous section, but with EXFed’s admission control
actively enforcing the preemption SLA. Our method reduces
the number of jobs admitted in order to meet its preemption
ratio guarantees (using the 0.05 upper bound). The results
show that EXFed maintains a preemption ratio below 0.05
for all experiments indicating that ahead-of-time guarantees
on the preemption ratio of federated instances are possible.
This result holds for differing levels of capacity constraints
across production traces.

Compared to the baseline results (Figure 1), EXFed’s
admission control provides certainty about preemption prob-
ability but increases (federation) rejection ratios. The native
work (not shown) is unaffected, but the work performed by
federated instances decreases. That is, our method trades off a
small amount of the total federated work completed to provide
an SLA on preemption ratio for federated jobs. These results
indicate that our method changes the way additional capacity
is used for federation. Because admission decisions depend on
the absolute amount of available spare capacity at the time of
the request, EXFed is less sensitive to workload properties and
achieves higher federation ratios on larger clouds.

We also observe that under SLA constraints, DS-B feder-
ates few jobs compared to DS-A and DS-C. The reason for this
is that for both sub-traces (one per cloud in the federation),
DS-A and DS-C contain large numbers of small and short-
running jobs, with DS-C also containing a few long-running,
service-like requests in sub-trace two. DS-B is different in
that sub-trace one contains primarily short jobs with a large
number of instances per request and sub-trace two contains
many long jobs with a small number of instances per request.
This mismatch in workload characteristics between the two

Fig. 3: DS-B on multiple cloud configurations without SLA
enforcement. The preemption and rejection ratios decrease as
capacity is added to the cloud federation (left to right) while
the federation ratio increases.

Fig. 4: DS-B on multiple cloud configurations with SLA
enforcement enabled. The preemption ratio remains below the
0.05 upper bound while the federation ratio increases with
additional capacity.

clouds in the federation, makes it more challenging to federate
jobs in DS-B compared to DS-A and DS-C.

F. Scaling With Cloud Capacity

We next evaluate EXFed’s ability to scale with added cloud
capacity. Specifically, we keep the workload and number of
clouds within the federation constant and vary the total capac-
ity of a single cloud. When resource constraints are removed
by adding sufficient capacity accommodate all requests at any
given time, SLA enforcement becomes unnecessary and may
effectively reduce utilization by imposing overhead. If our
method scales gracefully with capacity, it will admit additional
federation requests as the total capacity of the participating
clouds increases. Asymptotically, with increased capacity, our
method should complete a similar amount of work as the
no-guarantees baseline – with the added benefit of ahead-
of-time certainty about preemption probabilities. In particular,
we investigate the capacity scaling behavior of our admission
control for DS-B. This data set is of special interest as DS-
B represents our out-of-sample test and appears ill-suited for
federation when highly resource constrained.

Figures 3 and 4 show the results of our capacity scal-
ing experiments for DS-B for the baseline and SLA-enabled
admission control, respectively. The categories on the x-axis
again describe the size of the clouds in the federation. The left
figure in each pair shows federation statistics without SLA-
enforcement, the right with SLA-enforcement enabled with
an upper bound 0.05 preemption ratio of federated instances.
Federation capacity increases from left to right in each graph.
While the size of the cloud running sub-trace 1 is fixed at
16cores, the size of the cloud running sub-trace 2 increases in
steps of 16 cores, for a total federation capacity of 80 cores.

Figure 3 represents the baseline for scaling cloud capacity
with DS-B. The smallest configuration “16-16” results in a
0.27 preemption ratio. As the second cloud in the federa-
tion increases in size, the ratios decrease. Concurrently, the
federation ratio increases from 4% to 12%. With a manual
overprovisioning approach to SLA-enforcement we observe an
optimal capacity of cloud 2 to be approximately 48 cores.

Figure 4 shows results of using SLA-enabled admission
control for DS-B. The smallest configuration “16-16” results

in a preemption ratio near 0 because very few jobs can be
federated. As the federation capacity increases, the rejection
ratio decreases while the federation ratio increases. Moreover,
EXFed maintains a preemption ratio below 0.05 for all con-
figurations, remaining in the 0.01 to 0.02 range.

In results omitted for brevity the comparison of scaling
experiments for DS-A, DS-B and DS-C offers an additional
insight into the traces. The results indicate that the strongly
seasonal DS-A has more potential for federation than DS-B,
while DS-C behaves similarly to DS-B with a sharp decline
of federation activity under SLA- and capacity constraints.

These results show that EXFed is able to scale gracefully
with capacity and enables us to quantify the opportunity cost
for automatically enforcing an SLA on the preemption ratio of
federated jobs. Our admission control consistently maintains a
preemption ratio below its 0.05 target and increases the amount
of admitted federated work as capacity is added to the clouds.
The differences in work completed between the baseline and
the SLA-enabled cases are most visible in resource constrained
settings. As capacity is added to the clouds, admission control
accepts additional federated jobs, reaching federation ratios
within 20% of the baseline.

G. Scaling with Federation Size

The utility of cloud federation capabilities should increase
with a larger pool of workload available for consolidation.
We investigate whether EXFed delivers increased efficiency
with federation size by comparing the performance of different
federation setups with four individual clouds. Specifically, we
use four clouds executing fixed workload traces for federation
setups with 4 unconnected clouds, 2 unconnected and two
federated clouds, two separate federations with two clouds
each, and a single federation of all four clouds. If federation
adds value with increasing federation capacity and size of the
user pool, the fully federated setup should perform best while
the unconnected setup should perform worst.

Our experiment is similar to the scaling experiments in
Section III-F above, although we use DS-A to represent our
workload. As cloud configurations, we chose four clouds with
a configuration of “32-56-32-56”, indicating two clouds with
32 cores each and two clouds with 56 cores each. We refer

Fig. 5: Efficiency gains for four clouds (A, B, C, D) with
increasing federation size from left to right. Baseline (left), two
separate clouds and a federation of two clouds, two federations
of two clouds each, federation across all four clouds (right).
As the number of federated clouds increases, the aggregate
rejection ratio decreases while federated work increases.

to these clouds as “A”, “B”, “C”, and “D” respectively. To
obtain the 4 different traces necessary to drive all four clouds,
we use an new equal-length trace DS-Ax that was recorded
immediately following the end of the original DS-A trace. We
“time-shift” this new trace to simulate a workload executing
concurrently with DS-A.

Figure 5 shows the increasing benefit of adding opportuni-
ties for workload consolidation by joining clouds together in
a larger federation. We plot four different federation setups
as categories on the x-axis and again plot the aggregate
preemption ratio, rejection ratio and federated work ratio over
all four clouds on the y-axis. The leftmost setup represents
the baseline, with all four clouds executing their workloads
without federation, while the rightmost setup allows federation
across all four clouds. In all setups the clouds are of constant
size and replay their specific workload traces.

We observe an incremental improvement in the aggregate
amount work accepted by the clouds, as indicated by a
decreasing rejection ratio from left to right. Equivalently, as
the pool of workload and capacity increases by incrementally
joining clouds together by federation, the amount of federated
work increases. Admission control performs correctly in all
scenarios and maintains a preemption ratio well below the
0.05 threshold. The most relevant result is the improvement
from two federations of two clouds each to federation across
all four clouds. As the federation grows in total capacity and
user base – with constant size and workload – the smoothing
of demand leads to greater consolidation benefits.

IV. RELATED WORK

Eucalyptus [2], OpenStack [1], CloudStack [3] and Open-
Nebula [12] are open-source IaaS cloud frameworks. All four
support limited federation capabilities as part of a “hybrid
cloud” setup, albeit focused on API-compatibility and user
authentication.

The use of preemptible instances and resulting cost savings
and uncertainty has been studied in the literature [13], [14],
[15], [16]. Andrzejak et al. [17] use AWS spot price time

series to construct probabilistic bounds on the execution time
of jobs, assuming the presence job check-pointing capabilities.

Grozev and Buyya [18] survey a corpus of work in the
“inter-cloud” federation context. Researchers propose many
different architectures using brokers [19] and PaaS layers [20],
[21]. RESERVOIR [22] is a peer-to-peer federation system
between clouds to using job-level granularity, but does not
consider the interaction of SLAs and job preemption.

Our system, EXFed uses a de-centralized federation ar-
chitecture with job-level granularity. In contrast to existing
work, our approach allows each member cloud to remain in
control of its own resources at all times (i.e. receiving clouds
do not extend open-ended availability guarantees to federating
clouds), while still providing users with an SLA guarantee on
job completion probability. The SLA is available ahead-of-
time and is based on a statistical model learned from historic
cloud behavior. In our evaluation we investigate that the SLA
on job preemption fraction is met consistently for a variety of
realistic and adverse workload scenarios, rather than attempt
to optimize a monetary “profit” function. We also evaluate our
system in a real-world deployment by replaying scaled-down
workloads recorded from production systems across multiple
data centers.

V. CONCLUSION

We present EXFed, an efficient cross-federation system for
IaaS clouds that “ships” jobs between clouds and provides
ahead-of-time certainty about resource availability despite re-
taining the individual cloud’s ability to preempt foreign work-
load after admission. Clouds participating in the federation
remain in control of their local resources at all times by exclu-
sively using a predictable tier of preemptible instances to run
federated jobs. This predictable tier is enabled through a new
method that provides an SLA on the preemption probability
of groups of instances. The SLA considers data migration
and computation and derives from cloud utilization traces in
the recent past. The SLA guarantee is learned statistically,
is specific to each cloud participating in the federation, and
adapts to changes in utilization and transfer bandwidth.

We implement EXFed end-to-end on top of the Eucalyptus
IaaS framework. We deploy EXFed across multiple data cen-
ters and evaluate the robustness of our SLA guarantees under
realistic and adverse scenarios with a battery of production
traces recorded from industrial ”big data” clouds. We find
that EXFed consistently maintains the SLA on the preemption
probability of federated jobs and is robust to real-world condi-
tions such as seasonal patterns in load and resource contention.

ACKNOWLEDGMENTS

We thank our industry collaborators Altiscale and Turn for
providing us with anonymized workload traces. We also thank
CloudLab for providing capacity for our experiments. This
work is funded in part by NSF (CCF-1539586, CNS-1218808,
CNS-0905237, ACI-0751315), NIH (1R01EB014877-01), and
the California Energy Commission (PON-14-304).

REFERENCES

[1] “OpenStack,” [Online; accessed Aug-2014]
”http://www.openstack.org/”.

[2] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Cluster Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. IEEE, 2009, pp. 124–131.

[3] “CloudStack,” [Online; accessed Aug-2014]
”http://cloudstack.apache.org/”.

[4] “Amazon Web Services home page,” http://aws.amazon.com/.
[5] “Google Cloud Platform,” http://cloud.google.com/, [Online; accessed

01-May-2016].
[6] “Hadoop MapReduce,” ”http://hadoop.apache.org/”.
[7] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets.” HotCloud, vol. 10, pp.
10–10, 2010.

[8] D. H. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne, “A
worldwide flock of condors: Load sharing among workstation clusters,”
Future Generation Computer Systems, vol. 12, no. 1, pp. 53–65, 1996.

[9] “OpenStack Swift,” http://swift.openstack.org/, [Online; accessed 01-
May-2016].

[10] J. Barr, “Amazon EC2 Spot Instances And Now How Much Would
You Pay?” Dec. 2009. [Online]. Available: https://aws.amazon.com/
blogs/aws/ec2-spot-instances-and-now-how-much-would-you-pay/

[11] R. Ricci, E. Eide, and C. Team, “Introducing cloudlab: Scientific
infrastructure for advancing cloud architectures and applications,” Login
USENIX Magazine, vol. 39, no. 6, December 2014.

[12] D. Milojičić, I. M. Llorente, and R. S. Montero, “Opennebula: A cloud
management tool,” IEEE Internet Computing, vol. 15, no. 2, pp. 11–14,
2011.

[13] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy, “Spoton:
a batch computing service for the spot market,” in Proceedings of the
Sixth ACM Symposium on Cloud Computing. ACM, 2015, pp. 329–
341.

[14] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi,
and C. Krintz, “See spot run: Using spot instances for mapreduce
workflows,” in Proceedings of the 2Nd USENIX Conference on
Hot Topics in Cloud Computing, ser. HotCloud’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 7–7. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863103.1863110

[15] M. Mazzucco and M. Dumas, “Achieving performance and availability
guarantees with spot instances,” in High Performance Computing and
Communications (HPCC), 2011 IEEE 13th International Conference on,
Sept 2011, pp. 296–303.

[16] J. Chen, C. Wang, B. B. Zhou, L. Sun, Y. C. Lee, and A. Y. Zomaya,
“Tradeoffs between profit and customer satisfaction for service
provisioning in the cloud,” in Proceedings of the 20th International
Symposium on High Performance Distributed Computing, ser. HPDC
’11. New York, NY, USA: ACM, 2011, pp. 229–238. [Online].
Available: http://doi.acm.org/10.1145/1996130.1996161

[17] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for cloud
computing under sla constraints,” in Modeling, Analysis Simulation of
Computer and Telecommunication Systems (MASCOTS), 2010 IEEE
International Symposium on, Aug 2010, pp. 257–266.

[18] N. Grozev and R. Buyya, “Inter-cloud architectures and application
brokering: taxonomy and survey,” Software: Practice and Experience,
vol. 44, no. 3, pp. 369–390, 2014.

[19] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application
services,” in Proceedings of the 10th International Conference on
Algorithms and Architectures for Parallel Processing - Volume Part I,
ser. ICA3PP’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 13–31.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-13119-6 2

[20] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda,
L. Fong, S. M. Sadjadi, and M. Parashar, “Cloud federation in a layered
service model,” Journal of Computer and System Sciences, vol. 78,
no. 5, pp. 1330–1344, 2012.

[21] C. Bunch and C. Krintz, “Enabling automated hpc/database deployment
via the appscale hybrid cloud platform,” in Proceedings of the first
annual workshop on High performance computing meets databases.
ACM, 2011, pp. 13–16.

[22] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres et al., “The
reservoir model and architecture for open federated cloud computing,”
IBM Journal of Research and Development, vol. 53, no. 4, pp. 4–1,
2009.

