
Tracking Causal Order in AWS Lambda
Applications

Wei-Tsung Lin, Chandra Krintz, Rich Wolski, and Michael Zhang
Dept. of Computer Science, UC Santa Barbara

Xiaogang Cai, Tongjun Li, and Weijin Xu
Huawei Technologies Co. Inc.

Abstract—Serverless computing is a new cloud pro-
gramming and deployment paradigm that is receiving
wide-spread uptake. Serverless offerings such as Ama-
zon Web Services (AWS) Lambda, Google Functions, and
Azure Functions automatically execute simple functions
uploaded by developers, in response to cloud-based
event triggers. The serverless abstraction greatly sim-
plifies integration of concurrency and parallelism into
cloud applications, and enables deployment of scalable
distributed systems and services at very low cost.

Although a significant first step, the serverless ab-
straction requires tools that software engineers can use
to reason about, debug, and optimize their increas-
ingly complex, asynchronous applications. Toward this
end, we investigate the design and implementation of
GammaRay, a cloud service that extracts causal depen-
dencies across functions and through cloud services,
without programmer intervention. We implement Gam-
maRay for AWS Lambda and evaluate the overheads
that it introduces for serverless micro-benchmarks and
applications written in Python.

I. Introduction

Serverless computing [1], [2] (also known as cloud
functions or functions-as-a-service (FaaS) [3]), is an
emerging paradigm for cloud software development
and deployment in which software engineers express
arbitrary computations as simple functions that are
automatically invoked by a cloud platform in response
to cloud events (e.g. HTTP requests, performance or
availability changes in the infrastructure, data storage
and production, log activity, etc.). Serverless platforms
automatically set up and tear down function execution
environments on-demand (typically using Linux con-
tainers), precluding the need for developers explicitly
to provision and manage servers and configure soft-
ware stacks. Developers construct and upload functions
and specify triggering events. Functions are typically
written in high level languages including Python, Java,
or Node.js, leverage cloud services for their implemen-
tation, and communicate via HTTP or similar protocols.

Serverless applications are characterized by large
numbers of transient, short-lived, concurrent functions.
Because the cloud (and not the developer) provisions
the necessary resources, and such functions (by defini-
tion) can tolerate a high degree of multi-tenancy, appli-

cation owners pay a very small fee (after any “free tier”
usage) for CPU, memory, and cloud service use (e.g.
$0.20 per 1M invocations per month, and $0.00001667
per memory * execution time). To facilitate scale at a
low price point relative to virtual server rental, cloud
providers restrict function size (i.e., memory, code size,
disk) and execution duration (e.g. 5 minutes maximum).

Amazon Web Services (AWS) released the first com-
mercially viable FaaS, called AWS Lambda, in 2014 [4],
[5]. Since this time, the model has received wide-
spread adoption because of its simplicity, low-cost,
scalability, and fine-grained resource control versus
traditional cloud services. Its popularity has spawned
similar offerings in other public clouds (e.g. Google
and Azure Functions) and open source settings (IronIO,
OpenWhisk, Serverless Framework). Today, serverless
is used to implement a wide range of scalable, event-
driven, distributed cloud applications, including web
sites and cloud APIs, big data analytics, microservices,
image and video processing, log analyses, data synchro-
nization and backup, and real-time stream processing.

The serverless programming paradigm simplifies
parallel and concurrent programming and thus is a
significant step toward enabling efficiency and scale
for the next-generation (post-Moore’s-Law era) of ad-
vanced applications, such as those that interact with
data and the physical world (e.g. the Internet of Things
(IoT)) [6], [7]. However, the complexity of asynchronous
programming that these new applications embody re-
quires tools that developers can use to reason about,
debug, and optimize their applications. Today, such
tooling for FaaS applications is nascent with only sim-
ple logging services available. Logging forces develop-
ers to write complex secondary applications that down-
load, aggregate, analyze, and provide effective anomaly
alerts or feedback. Such effort is error prone, takes
focus away from innovation, and must be repeated for
every application.

To address some of these needs for Lambda, Amazon
has developed AWS X-Ray [8]. X-Ray links function
activities together using unique identifiers per function
invocation and presents performance and dependency
data to developers as logs and service graph summaries
for each application. Although a good first step, X-Ray

is limited in that (i) it does not provide causal ordering
of events, (ii) it does not trace through cloud services
(i.e. to capture dependency A→B, for a function A that
updates a DynamoDB table that triggers function B),
(iii) it performs sampling (missing events), and (iv) its
history is limited to 24 hours.

Causal order is a partial order on the events in
a distributed application that can be induced from
observing internal events and messages between func-
tions. Causality is an important tool employed in con-
current and distributed systems that facilitates reason-
ing about, analyzing, and drawing inferences from a
computation [9], [10], [11], [12]. In particular, causal
order is required for function design (to enable mu-
tual exclusion, consistency, deadlock detection), for dis-
tributed debugging, failure recovery, and inconsistency
detection, for reasoning about progress (termination
detection, collection of obsolete data and state), and
for measuring and optimizing concurrency. This lack
of support in AWS Lambda limits the degree to which
developers can identify the root cause of errors, per-
formance bottlenecks, cost anomalies, and optimization
opportunities for Lambda applications.

To address these limitations, we present Gam-
maRay, a cloud service for AWS Lambda applications
that provides a holistic view of causal application be-
havior and performance end-to-end. GammaRay re-
quires no developer intervention and works across AWS
regions and AWS cloud services. GammaRay intercepts
Lambda function entry points and calls to AWS ser-
vices made by the application. It records these events
synchronously using transactional database streams
(to guarantee causal consistency) and processes them
off line, in near real-time, to provide developers with
service graphs and analysis data at both the function
aggregate and instance level. As such, GammaRay
precludes the need for developers to write their own
CloudWatch and X-Ray log parsing and aggregation
tools for each application, and provides causal ordering
for concurrent, multi-function Lambda applications.

This paper investigates three implementation alter-
natives for GammaRay. Two of these alternatives are
full X-Ray replacements that collect both performance
data and causal relationships using static and dynamic
instrumentation. The third is a hybrid approach that
leverages X-Ray for performance monitoring (incurring
some of its limitations) in exchange for lower runtime
performance overhead. We investigate the overhead
of each alternative using micro-benchmarks and multi-
function serverless applications and find that the hybrid
approach introduces the least overhead in terms of
execution time and memory. In terms of monetary cost,
GammaRay is able to track causal order of events with
and additional $0.00000004 per Lambda function and
$0.03315 per hour for maintaining the transactional
log. For the Lambda applications that we consider, this
translates to less than 4 cents per hour.

II. Background

Serverless computing is a cloud computing exe-
cution model in which a cloud service invokes func-
tions that comprise an application, on behalf of an
application owner and in response to cloud service
events. Event triggers include HTTP requests, database
or object store updates, invocation by other functions,
performance or availability changes in the infrastruc-
ture, log and queue activity, and publish/subscribe
notifications, among others. Because the service au-
tomates and abstracts away the details of function
invocation, resource allocation and deallocation, and
runtime triggers for these applications, the model is
referred to as serverless, even though, behind the
scenes, servers are still involved. In this section, we
provide background on the AWS Lambda service which
we build upon and extend in this paper.

A. AWS Lambda

AWS Lambda was made available to the public as
an AWS service in 2014. The service provides support
for Lambda functions written in Python, Java, C#, and
Node.js, which access AWS cloud services via AWS
software development kits (SDKs) for these languages.
Each Lambda function has a single entry point (speci-
fied in its deployment configuration) and is deployed
in a particular AWS region. A Lambda function can
invoke other Lambda functions (including themselves)
in the same region. They can also be invoked automat-
ically (i.e. triggered) by updates made to AWS “event
sources” including DynamoDB, Simple Storage Service
(S3 object storage) Simple Notification Service (SNS),
CloudWatch, Alexa, and Kinesis. Some services serving
as event sources pass details about the triggering
action (e.g. the key that was updated in DynamoDB,
the bucket and file prefix that was deleted or modified
in S3, the SNS topic to which a post occurred, etc.).
Other event sources such as function invocation via
the command line interface (CLI) and the AWS API
Gateway that trigger functions asynchronously, include
no trigger-identifying information in the callee.

AWS deploys Lambda functions via isolated Linux
containers and may (or may not) reuse containers for
repeat executions of the same, recently executed, func-
tion [13]. Functions can access parts of the container
file system (e.g. deployment directory and /tmp), en-
vironment variables, and the network. Functions can
integrate libraries and binary programs, but the re-
sulting deployment package is size-constrained. AWS
Lambda also limits the number of concurrent func-
tion executions, disk usage, and execution duration of
functions (e.g. to 5 minutes), among other restrictions.
The latest AWS Lambda limits can be found at http:
//docs.aws.amazon.com/lambda/latest/dg/limits.html.

Some AWS event sources (e.g. DynamoDB, Kinesis,
CloudWatch logs) can trigger multiple functions in the

Fig. 1: X-Ray service graph for ImgProc [14].

same region for the same event (i.e. events have “fan-
out” dependencies). Alternatively, S3 and API Gateway
trigger a single function in the same region per path
or route, respectively. Finally, a SNS notification can
trigger one or more Lambda functions in any region and
is an ideal event source for cross-region interoperation
within region-distributed Lambda applications.

B. Monitoring AWS Lambda Applications

There are two performance monitoring services
available to AWS application developers: CloudWatch
and X-ray. CloudWatch is a service that collects
information about AWS service and resource use.
It also includes the ability for applications to write
their own performance records and an API for
filtering, downloading, and reading CloudWatch logs.
Accessing CloudWatch via the API however, is limited
(e.g. 5 transactions per second per region) with
commonly long delays (on the order of seconds)
between event execution and the availability of its
log record (imposed for scaling and system stability
purposes). The latest CloudWatch limits can be found
at http://docs.aws.amazon.com/AmazonCloudWatch/
latest/logs/cloudwatch_limits_cwl.html.

CloudWatch logging is available for AWS Lambda
functions in all AWS regions, however log streams are
local to a region and may or may not be distinct for con-
current invocations of the same function. Developers
must write complex applications (potentially as Lambda
applications themselves) to extract actionable insights
about the performance and behavior of their Lambda
applications, which is tedious and error prone given the
use limits, region isolation, and eventual consistency
of CloudWatch logging. Such efforts are infeasible and
costly for even medium-scale AWS Lambda applica-
tions, which can consist of hundreds to thousands of
function instances.

To address some of these limitations for highly
dynamic Lambda applications, web applications, and
microservices, AWS provides X-Ray. X-Ray is a moni-
toring and display service that automatically samples
the entry and exit of function instances, called seg-
ments, using unique trace identifiers (trace_id). When
a sample is taken, X-Ray records function duration
and container startup overhead, and the duration of
dynamic function SDK calls and HTTP accesses, as
subsegments. Users can define, annotate, and record
their own subsegments. X-Ray data is sent to an X-Ray
daemon running in the container with the function via
UDP. The daemon buffers and sends monitoring data
(when sampled) to the X-Ray logging service.

The X-Ray service presents data to developers as
logs and dependency trees, called service graphs.
X-Ray links the segment and its subsegments (per
trace_id) into an application’s service graph as leaf
nodes with meta-information, such as the DynamoDB
table name that the function updated and the region in
which it is located. Service graphs visualize X-Ray log
data for specified time durations (aggregating multiple
invocations of the applications). X-Ray data is deleted
after 24 hours.

Figure 1 presents an X-Ray service graph for an
example AWS Lambda application [14]. The application
control flow is as follows (captured by the service
graph). The application, called ImageProcPyF, is trig-
gered by a user uploading a photo to an S3 bucket.
The function invokes the AWS Rekognition image pro-
cessing service (via the SDK) on the photo and writes
the labels returned in a DynamoDB table (image-proc-
F). The function then updates a web page (cf the
requests object) and exits. The table write triggers a
second function (DBSyncPyF), which copies the data
across regions (reading table image-proc-F in the west
region and writing to table eastSyncTable-F in the east
region). This second write triggers a third function
(UpdateWebsiteF) in the east region which writes to
a web page in its region.

When a function is triggered by an unknown source,
the service graph represents this via a Clients icon.
X-Ray divides the function into two parts (subseg-
ments): its startup overhead (type AWS::Lambda) and
its execution time (AWS::Lambda::Function). Multiple
instances of functions are combined into aggregate
service graphs by X-Ray. However, within the raw
data of the logs from which the service graphs are
drawn, there is a segment with a unique trace_id for
each service graph with unknown source. The segment
consists of metadata and subsegments (for SDK calls,
HTTP requests, and any user-defined operations). The
metadata includes start and end times, trace_id, and
details about the operation type and outcome (e.g.
error status, if any). Segments and subsegments are
linked via Id’s and parent_id’s for subsegments with
the same trace_id. Thus it is possible to construct an

ordering of events (subsegments) that originate from
the same function (parent) but not across top-level
segments.

C. Limitations

The figure above (Fig. 1) reveals multiple limitations
of X-Ray. First, even though ImageProcPyF triggers
DBSyncPyF and DBSyncPyF triggers UpdateWebsiteF
via DynamoDB table updates, X-Ray logs and service
graphs do not capture these relationships. Similarly,
across regions, functions are disconnected and part of
independent X-Ray traces. Moreover, the only option
for viewing service graph data is in aggregate; only
raw log data contains per function instance data.

Other X-Ray limitations relate to record loss. X-Ray
uses statistical sampling of performance information.
Highly scalable applications, “rare” events that exer-
cise code paths that are difficult to test can cause
faults that are difficult to reproduce and diagnose. If
the events are sufficiently rare, a statistical technique
may miss them. In addition, X-Ray uses UDP messages
to a separate process in the container to offload log-
ging overhead. Because UDP is an unreliable network
transport mechanism, it may be that messages are lost
before their content is logged. Given this implementa-
tion, it is not possible to use X-Ray alone to construct
the causal order of events across Lambda applications.

III. GammaRay

Causality (or the causal precedence relation) is a
well understood and important tool employed in con-
current and distributed systems that enables develop-
ers to reason about, analyze, and draw inferences from
their applications [11], [15], [16]. Such reasoning and
analysis is difficult in these settings because the com-
munication delay is unpredictable between distributed
functions that communicate via message passing over
a network. As such, it is impossible for them to agree
on the exact time and thus on the total order of events
that the application experiences across functions [9].
However, it is possible to establish a partial order on
events with causal precedence if we know the order of
internal events – and – we synchronously record when
messages are passed.

To facilitate causal order tracking for serverless
applications in AWS that is cloud-wide – across all
AWS services and regions – we have developed a
cloud service for AWS called GammaRay. GammaRay
extracts causal precedence for Lambda applications
by monitoring both function-internal events (like X-
Ray) and the message-passing performed by functions
through AWS cloud services (which X-Ray does not).
Moreover, GammaRay augments causal relations with
both aggregate and instance-level performance data.
To enable this, GammaRay automatically injects instru-
mentation into Lambda functions and into the SDK with
which they invoke cloud services (event sources that

Fig. 2: GammaRay Overview. GammaRay automatically
injects support that captures the entry/exit and SDK
(cloud service access) of AWS Lambda applications.
Each SDK invocation carries a trace identifier through
the call. GammaRay extracts the identifier upon func-
tion entry for any triggered functions.

trigger other functions) upon function deployment to
AWS Lambda. GammaRay considers messages in this
setting to be SDK calls between functions and services.

Figure 2 depicts a Lambda function with X-Ray
support. On the left is the local X-Ray logging progress
which receives UDP messages from the function for
sampled events. X-Ray records performance informa-
tion before and after Lambda function execution and
invocation of SDK calls (calls to other AWS and web
services). GammaRay augments this support with syn-
chronized recording (GammaRay Sync in the figure) of
the sender and receiver for each function invocation
and immediately prior to any SDK call to a potential
event source (function-triggering service invocation).
GammaRay consumes these records off-line to compute
causal relations and performance statistics for each
event and to construct a service graph that can be
easily interrogated by developers and analysis tools.

The GammaRay design consists of three compo-
nents: a Lambda function deployment tool, GammaRay
runtime support, and GammaRay event processing en-
gine. The function deployment tool takes a code direc-
tory and a list of libraries and builds a code package
that it then uploads to Lambda using the developer’s
credentials. The tool filters out unused libraries to min-
imize package size. If GammaRay support is requested
(a command line option), the tool injects GammaRay
instrumentation to perform synchronized record keep-
ing.

GammaRay records metadata about each event syn-
chronously in a database that tracks update order (im-
plements a transactional log). This metadata includes
unique function ID and details about the SDK call such
as table name and keys for DynamoDB updates, bucket
name, prefix, and key for S3 updates, SNS topics, and
HTTP URLs. GammaRay uses this metadata offline to
map event sources to functions to form the causal order
of events across AWS Lambda applications, services,
and regions. GammaRay augments this information
with performance data about each event. GammaRay
can obtain this data from X-Ray samples or it can

Fig. 3: GammaRay service graph for ImgProc [14].
GammaRay captures causal dependencies and perfor-
mance through AWS services and across regions.

collect the data itself (with or without sampling) via
additional instrumentation (inserted at the same points
as X-Ray instrumentation). We consider these various
implementation options in the next section.

As mentioned previously, when a Lambda function
invokes another (via the SDK or HTTP) there is no
trigger-identifying information available in the callee.
To overcome this limitation, GammaRay injects the
caller’s unique (request) ID into the payload of the SDK
invocation as a hidden argument. This data is later
used by the GammaRay event processing engine to
map cloud service updates (event sources) to function
invocations and to produce causal relations across the
application.

The GammaRay event processing engine runs in
the background and in response to updates to the
transactional database stream. The engine construct a
service graph using the causal order and performance
data from events across an application 1. Using the
GammaRay API, this data can be queried and ana-
lyzed by downstream data analysis tools, e.g. those for
anomaly detection and root cause analysis [17].

A. Implementations

We next investigate three alternative implementa-
tions of GammaRay: G-Ray-D, G-Ray-S, and G-Ray-H.
In all three, GammaRay automatically inserts “hidden”
arguments into function invocations as needed, and
processes all function arguments upon function entry.

1Note that DynamoDB Stream semantics (employed by GammaRay
to implement the transactional database stream) enables multiple
agents to agree upon a single shared total order on events (when/if
connected).

Additionally, all configurations implement the Gam-
maRay log via a shared DynamoDB table and stream.
DynamoDB Streams record the sequence of record-
level DynamoDB table modifications and thus enable
GammaRay to extract the causal relationships across
events that it records (in the order they occur).

G-Ray-D injects the necessary GammaRay instru-
mentation dynamically using a library that “monkey-
patches” [18] AWS Lambda SDK calls made by the
function to invoke the GammaRay runtime before and
after the call. It represents the most flexible, portable,
and application-transparent implementation strategy.
Alternatively, G-Ray-S implements the same function-
ality by adding the instrumentation code statically to
the AWS Lambda Python SDK. It increases the size of
an instrumented Lambda program (both in terms of
memory and package size) but avoids dynamic runtime
instrumentation overhead.

G-Ray-D and G-Ray-S are full replacements for AWS
X-Ray (i.e. they also collect event performance data).
They improve upon X-Ray in two ways. First, they track
causal order across AWS regions and across service
invocations. Secondly, they track all events (rather than
a statistical sample) so they can be better used for
performance debugging activities such as diagnosis of
faults due to rare events (X-Ray uses statistical sam-
pling). Moreover, because they only depend on AWS’s
scalable database (DynamoDB), and this functionality
is relatively common among public cloud providers, in
theory, these implementations could be ported to other
public clouds.

Alternatively, G-Ray-H is an AWS-specific implemen-
tation of GammaRay that makes maximal use of extant
AWS services, including X-Ray and CloudWatch. It im-
plements the same causal-ordering tracking as G-Ray-
D and G-Ray-S, but because G-Ray-H relies on AWS for
function timings, its performance data is sampled.

All implementations use the AWS SDK (boto [19])
and G-Ray-H and G-Ray-D rely on the Fleece library for
X-Ray daemon support [20] for Python. The GammaRay
deployment tool also uses the SDK to upload the com-
pressed Lambda package to AWS Lambda, to set up
the necessary policy and permissions for the function,
and to configure any event sources that trigger function
invocation. We have experimented with implementing
GammaRay for Java as well. In this paper, however, we
report on our experiences with Python exclusively.

B. GammaRay Event Processing Engine

The GammaRay event processing engine runs of-
fline – in the background and so does not introduce
overhead on serverless applications. The engine pro-
cesses the table data in append-order via the Dy-
namoDB Stream. From this information, it constructs
a service graph containing causal order dependencies
for each application across AWS services and regions.

App Description
empty Micro: Returns immediately
DDB read Micro: 100 random reads of DynamoDB table
DDB write Micro: 100 random writes to DynamoDB table
S3 read Micro: 100 random reads of random S3 object
S3 write Micro: 100 creates of a new S3 object
SNS Micro: 100 postings to SNS
Map- A Big-Data-Benchmark [22] app implemented
Reduce in Lambda by AWS Engineers [23]
ImgProc Image Processing app [14]. Images uploaded

to S3 trigger a function which extracts labels using AWS
Rekognition service, and reads and writes DynamoDB tables
within and across regions (performing geo-replication),
and triggering a cross-region function

TABLE I: Micro-benchmarks (demarked Micro) and
Multi-Function Lambda Apps used to evaluate Gam-
maRay. All are available from our project repository.

Fig. 4: Baseline performance data for the micro-
benchmarks and Lambda apps. The top table shows the
total time in microseconds; the bottom table shows the
total memory consumed in MB, on average across runs.

It presents this data to users as graph aggregates
(as X-Ray does) or for individual function instances
(which X-Ray does not) and annotates the graph with
performance data. The amount and type of data with
which GammaRay annotates its graphs is configurable.

Figure 3 shows the service graph for the ImgProc
application for one run of the G-Ray-S configuration.
GammaRay leverages graphviz [21] for its service
graph implementation. In this configuration, the engine
displays SDK operation names and key names, and
average performance across event instances. Because
the S3 write is performed by a user (Clients) directly,
the average time is not available (denoted ??ms in the
figure). GammaRay displays non-event-source opera-
tions (e.g. DB reads) in gray and errors in red.

IV. Evaluation

To evaluate GammaRay, as well as to illuminate
the source of the overhead it introduces, we employ
both multi-function Lambda applications and micro-
benchmarks. We first overview these applications and
our empirical methodology and then present our em-
pirical results. We used only the AWS Free Tier for
implementation and evaluation of this study (i.e. no
costs were incurred for function invocation).

A. Methodology

The applications and micro-benchmarks that we
use in this study are listed in Table I. We present
the baseline timings in milliseconds (ms) and memory
used in megabytes (MB) for each in Figure 4. For the
micro-benchmarks, the DB payload is 4 bytes; the S3
operations are on empty files. We execute both sets of
Lambda applications multiple times and compute the
average and standard deviation. We execute the micro-
benchmarks 200 times and the Lambda applications 50
times unless otherwise noted. All run sets occurred in
sequence so cold-start overhead is only experienced for
the first run.

The baseline configurations, which we use for com-
parison and which include no GammaRay functionality,
are Clean, X-RayND and X-Ray. Clean captures the
performance of the application with all tracing turned
off for all functions. X-RayND shows the performance
of the stock AWS X-Ray with tracing turned on, but
the data capture mechanisms do not use a separate
X-Ray “daemon”. Without this daemon option, X-Ray
logs function entry and exit calls in Python applications
but not the Python SDK calls that the function makes.
X-Ray is full AWS X-Ray support for Python applications
using the X-Ray daemon implemented via the Fleece
library [20].

The baseline measurements reveal interesting char-
acteristics about AWS Lambda. First, the empty micro-
benchmark results (in which the function simply re-
turns) show no statistical difference in either the mean
or the variance of their execution times, either with or
without tracing. This result seems to indicate that the
X-Ray logs are updated asynchronously (i.e. there is in-
termediate buffering for which users are not charged).

Full X-Ray introduces overhead for both the
DDBread and DDBwrite benchmark. Each benchmark
reads/writes DynamoDB 100 times. In the case of
X-RayND, only the start and exit of the benchmark are
logged. For X-Ray, each of the internal 100 SDK calls to
DynamoDB are also logged. Since the mean execution
time approximately doubles, we conclude that internal
SDK logging for DynamoDB using the X-ray daemon
requires approximately 1/100 the time required for
entry and exit logging. The same seems to hold for S3
reads but not for S3 writes (which take more time than
reads. For long-running X-Ray does not wait but instead

Fig. 5: Percent overhead versus X-Ray for Gam-
maRay for the Map-Reduce Lambda application. For
each GammaRay variant (G-Ray-D=dynamic, G-Ray-
S=static, and G-Ray-H=hybrid), we present the percent
overhead on total time across functions and on memory
used across functions, on average for 50 runs of the
application.

posts records that the operation is “in-progress” [24]
potentially incurring more overhead for multiple log
records.

For the multi-function Lambda applications, Map-
Reduce and ImgProc, X-Ray executes in less total time
than Clean (last two rows of top table in Figure 4).
We ran a Student’s t-test [25] on the datasets and find
that their means are different. We do not have a good
explanation as to why X-Ray is faster but believe that it
is related to the AWS implementation and deployment
of X-Ray. In our evaluation, we compare GammaRay to
X-Ray for these applications.

B. Application Performance

We first empirically evaluate GammaRay for our
long-running Lambda application: Map-Reduce. This
application was written by AWS engineers and is based
on one of the Big Data Benchmark programs [22]. This
application implements the map-reduce protocol but re-
lies only on AWS Lambda and S3 for its implementation,
i.e. it does not use HDFS [26], Hadoop [27], Spark [28],
or Amazon Elastic Map Reduce (EMR). We use the
pavlo/text/1node/uservisits dataset which is 24MB in
size and contains IP addresses that have visited par-
ticular websites. The application invokes 29 mappers,
which read their portion of the input from S3. Mappers
count the number of access per IP prefix for a range of
IPs and store the results in S3. A coordinator monitors
this progress (via triggers from S3 writes) and invokes
a single reducer function when all mappers complete.
The reducer downloads the intermediate results and
performs a reduction across them to produce the final
per-IP count, which it stores in S3 (which again triggers
the coordinator one final time).

Fig. 6: Percent overhead versus X-Ray for GammaRay
for the Image Processing (ImgProc) Lambda applica-
tion. For each GammaRay variant (G-Ray-D=dynamic,
G-Ray-S=static, and G-Ray-H=hybrid), we present the
percent overhead on total time across functions and on
memory used across functions, on average for 50 runs
of the application.

Recall from Figure 4, the application without Gam-
maRay or X-Ray completes in approximately 125 sec-
onds and 114 seconds with full X-Ray enabled. Figure 5
shows the percentage overhead versus full X-Ray intro-
duced by GammaRay on the map-reduce application.
On total time, G-Ray-D introduces 25.1%, G-Ray-S in-
troduces 15.3%, and G-Ray-H introduces 11.9% over-
head versus X-Ray. On memory use, G-Ray-D intro-
duces 3.7%, G-Ray-S introduces 7.5%, and G-Ray-H
introduces 4.4% overhead.

This overhead is primarily due to the instrumen-
tation performed by each variant. On function entry,
GammaRay parses and logs (in DynamoDB) function
input data. G-Ray-D and G-Ray-S both also log exit
events to DynamoDB (to record timings). G-Ray-D and
G-Ray-S log before and after each SDK call to capture
timings and causal dependencies; G-Ray-H records a
log entry before each SDK call that might trigger
other Lambda functions, to track causal dependencies.
Moreover, X-Ray tracing is turned off for G-Ray-D and
G-Ray-S (because it is not needed) and turned on for
G-Ray-H which uses X-Ray data to annotate the causal
service graph with performance data (offline).

The overhead of GammaRay is low for this appli-
cation because the time spent not executing event-
source-triggering calls is large relative (the application
executes for over 124 seconds) to the number of calls
that GammaRay instruments. For this app, G-Ray-S
and G-Ray-D generate over 840 GammaRay tracing
records; G-Ray-H generates 125 records. As a result,
much of the time is spent in mapper and reducer
functions for data processing.

We next evaluate the overhead of GammaRay for the
short running ImgProc application. ImgProc performs

Fig. 7: Container disk space usage for GammaRay
wrapper and library support

image processing and geo-replication of database ta-
bles; we describe this application fully in Section II. The
application consists of three dependent functions (two
in the east region and one in the west) that trigger each
other via DynamoDB table updates (in both regions).
Application execution is initiated by file being placed
in an S3 bucket.

Figure 6 shows the percentage overhead of Gam-
maRay versus X-Ray for the ImgProc application. As
shown in the baseline data, one instance of the app
completes in 3.1 seconds and uses 114MB of memory
for X-Ray. Because a single instance of this application
is very short running, GammaRay consumes a signif-
icantly larger overall percentage of total time than it
did for Map-Reduce. For this application, G-Ray-D intro-
duces 92.3%, G-Ray-S introduces 66.8%, and G-Ray-H
introduces 42.9% execution overhead. In terms of mem-
ory use, G-Ray-D introduces 26.5%, G-Ray-S introduces
101.1%, and G-Ray-H introduces 7.2% overhead.

The implementation of G-Ray-S adds more memory
overhead than the other variants. We believe this is
because of the additional code footprint that we require
for the GammaRay library extensions (we measure and
discuss disk space usage further below). Moreover, a
single invocation of the ImgProc application comprises
18 events that consume most of the execution time.
GammaRay writes database records for all 18 events
including entry/exit for configurations G-Ray-D and
G-Ray-S. Configuration G-Ray-H posts only 5 records at
during execution (those sufficient to capture the causal
ordering). Clean, X-RayND, and X-Ray post no records
during execution – all performance data is recorded via
unreliable communication and eventually consistent,
non-order preserving logs, asynchronously.

From the results of these two Lambda applications,
we conclude that the execution overhead associated
with tracking causal ordering across regions and AWS
service invocations is lowest for the GammaRay–X-
Ray hybrid (configuration G-Ray-H). This configuration
enables GammaRay to use less memory and record
the minimal set of events (required to identify causal
relations across events) synchronously, and all other
events asynchronously via the X-Ray daemon. We next
investigate the overhead that GammaRay introduces
at a finer grain using micro-benchmarks (the first six
programs in Table I).

C. Container Disk Space Usage

As discussed previously, the empty micro-
benchmark returns immediately when invoked. We use
this micro-benchmark to evaluate the storage overhead
GammaRay imposes on container disk space given
the minimal Clean code package of this benchmark.
The table in Figure 7 reports disk space usage in
megabytes (MB) for the Lambda function package (the
function code and its libraries) that is downloaded and
decompressed upon container instantiation when a
function is invoked. Columns 2 and 3 shows the size in
MB for the package compressed and uncompressed.
On average GammaRay increases compressed package
size by less than 1% for G-Ray-H.

The size of the package is limited by AWS to have
a maximum of 50MB compressed and 250MB uncom-
pressed. Large package sizes also slow down function
deployment times (including version replacement and
code update). To keep deployment times low, libraries
in the package can be placed in the tmp file system in
the container. To use this option, developers package
this code separately and upload it to S3. Upon invoca-
tion the developer adds code to the start of the function
that downloads, extracts, and links the code into the
application. The GammaRay tool performs these oper-
ations automatically. AWS limits the maximum size of
the tmp file system to 500MB.

We use this option for the G-Ray-S configuration.
We do so because this configuration rewrites a small
portion of the AWS SDK (botocore). AWS provides the
SDK in the container for free. Because of the rewrite,
GammaRay must include botocore in the deployment
(to replace the default container version). By doing so,
G-Ray-S has a very small project package and a large
(compressed and uncompressed) tmp file system com-
ponent as shown in the table using columns 3 and 4.
We include the time required to download from S3 and
uncompress the package in all G-Ray-S experiments.
We find that if the function is executed repeatedly and
AWS reuses the container, we can avoid this overhead.
To do so, GammaRay first checks whether the down-
loaded package exists and if so, performs only library
loading and linking.

We also believe that the additional G-Ray-S library
code increases the overall memory footprint at runtime
(cf G-Ray-S Memory in Figures 5 and 6). On average,
however, GammaRay introduces a small overhead on
container storage for its wrappers and additional li-
braries for both G-Ray-D and G-Ray-H versus X-Ray
because it is able to leverage the same libraries as X-
Ray for their implementation.

D. Micro-Benchmark Performance

We next breakdown the overhead of tracing on the
remaining micro-benchmarks. We present results only

Fig. 8: Micro-benchmark Result Summary. The top table shows the overhead on total time (TTime) in milliseconds
(ms) and the bottom table shows overhead on memory in megabytes (MB) for the micro-benchmark programs.
The first row of data is the overhead that X-Ray introduces for performance monitoring. The second row of data
is the additional overhead on top of X-Ray that GammaRay introduces. In the top table, the overhead is broken
down by startup time and per-SDK operation. At startup, the GammaRay wrapper introduces 125ms for obtaining
a handle to the GammaRay database table from AWS and just under 300ms for processing function inputs and
storing them in the table.

for G-Ray-H (the best performing GammaRay config-
uration) due to space constraints. G-Ray-H keeps its
overhead low by relying on X-Ray to collect perfor-
mance statistics. Thus X-Ray must be turned on in
this configuration (introducing some overhead itself).
Moreover, since X-Ray only performs sampling and its
logs are eventually consistent (with delays of seconds in
many cases), the performance information on the Gam-
maRay service graphs is also subject to these disadvan-
tages. However, GammaRay guarantees causal order
for service graph connectivity through AWS services.

The two DDB micro-benchmarks execute random
100 reads and 100 writes to different AWS DynamoDB
tables, respectively. The two S3 micro-benchmarks ex-
ecute random 100 reads and 100 writes to AWS S3
buckets, respectively. And the SNS micro-benchmark
posts 100 notifications to AWS SNS. The performance
data for the Clean and X-Ray configurations to which
we compare is shown in the baseline data (Figure 4).
The performance results for the micro-benchmarks is
shown in Figure 8. The top table presents data for
total time overhead in milliseconds (ms) and the bottom
table shows memory overhead in megabytes (MB) for
X-Ray and G-Ray-H.

For total time overhead (the top table), we break
out that imposed on function startup from that imposed
on SDK calls. The first row of data in the top table
shows the number of milliseconds added to Clean by
X-Ray. X-Ray tracing overhead is lowest on DynamoDB
reads and writes and highest on S3 writes and SNS
notifications. We believe that this latter overhead is
due to the multiple “in-progress” records that X-Ray
posts for longer running operations such as these.
We observe many such records for S3 write and SNS
operations for these benchmarks.

The second row in the top table shows the additional

overhead (over X-Ray) that G-Ray-H introduces. Since
GammaRay relies on X-Ray for performance data, the
total overhead of GammaRay versus Clean is a com-
bination of both X-Ray and GammaRay (last row in
both tables). G-Ray-H overhead consists of obtaining
a handle to the GammaRay DynamoDB table, parsing
the function arguments to extract trigger information
(either inserted by GammaRay or by AWS automati-
cally), and synchronously writing a record containing
this payload to the DynamoDB table. The payload con-
tains a timestamp, the request ID, the function ID,
and 4-8 additional strings describing the event source
(triggering operation). Depending on the event source
this payload can vary in size from 16 bytes to arbitrary
length (e.g. a DynamoDB key, S3 bucket name, or SNS
subject contains application-specific data which can be
large).

In our study, the largest payload we have observed is
4 kilobytes. Thus, table write time by the GammaRay
wrapper can vary but we observe it to be 293ms on
average with a standard deviation of 78ms. We mea-
sured the time to obtain the DynamoDB handle from
AWS via repeated executions in a Lambda function (i.e.
as another micro-benchmark). We find that for Clean,
this operation takes 126ms on average (with a standard
deviation of 59ms). Because this startup overhead has
a significant impact on short-running applications (as
shown previously for the ImgProc application), we are
investigating ways of minimizing payload size in par-
ticular, and optimizing the GammaRay startup process
(wrapper), as part of future work.

As shown in columns 3-7 (row 2 of data) in the
top table, GammaRay introduces 1-34ms of additional
overhead (over X-Ray) on individual SDK operations.
Because G-Ray-H writes to the DynamoDB table once
per operation (immediately prior to the operation), only
for events that can potentially trigger other Lambda

functions, its overhead is small for DDB Read and S3
Read. Only DDB Write, S3 Write, and SNS include
operations that are potentially triggering (i.e. they can
be event sources).

The final column of the table shows the average
overhead per operation. X-Ray introduces 60ms per
operation for tracing and G-Ray-H introduces an addi-
tional 28% (17ms). The sum of these overheads is what
G-Ray-H requires to produce causal service graphs,
through AWS services, annotated with performance
data. This data is shown in the bottom row of both
tables. In terms of memory (bottom table), X-Ray intro-
duces 16MB of memory, with G-Ray-H adding another
31% (5MB), across the micro-benchmarks on average.

V. Related Work

In this section, we overview related work. We focus
on research contributions in the area of debugging
serverless applications and tracking causal relation-
ships in distributed systems.

The Serverless framework[29] simplifies the process
of developing Lambda applications. With an offline
plugin, users debug Lambda functions locally. Docker-
lambda[30] is a reverse-engineered sandbox that repli-
cates AWS Lambda. It supports all Lambda runtimes
and guarantees the same behavior of on AWS Lambda.
Josef Spillner studied FaaS and implemented Snafu[31],
a modular system compatible to AWS Lambda, which
is useful for debugging Lambda applications. The only
other extant debugging and analysis support for AWS
Lambda applications comes from logging tools Cloud-
Watch and X-Ray. New Relic[32] and Dashbird[33] pro-
vide AWS Lambda monitoring by summarizing data
from AWS Cloudwatch. Zipkin[34] is a distributed trac-
ing system based on Google Dapper[35].

Capturing causal ordering in support of debugging
and performance analysis is well understood and has
been extensively researched. Schwarz et al.[11] shows
that characterizing the causal relationship is key to
understanding distributed applications. Bailis et al.
revisits causality in [36] in the context of real-world
applications and proposes a number of interesting ex-
tensions to the model.

Many systems track causal relationships in dis-
tributed applications. Google has made its production
distributed systems tracing infrastructure, Dapper[35]
available for public use. The paper describes how they
achieve low overhead, application-level transparency,
and ubiquitous deployment in the large scale. Fonseca
et al. proposed X-trace[37], a tracing framework that
provides a comprehensive view of behavior of a mod-
ern Internet system that consists of many applications
across multiple administrative domains. Kronos [38]
utilizes a separate event ordering service to determine
the order of interdependent operations in a distributed

system. Escriva et al. demonstrates the benefit of pro-
viding a Kronos API via several example applications.

Other research contributes new approaches to
achieving causal consistency in distributed and
scalable datastore systems. Lloyd et al. proposed
COPS[39], a key-value store that delivers causal
consistency across the wide-area. They identify and
define a new consistency model, causal consistency
with convergent conflict handling. Bolt-on[40] is a
system proposed by Bailis et al., which provides a
shim layer that provides causal consistency on top
of general-purpose and widely deployed datastores.
Saturn[41] is a metadata service for geo-replicated
data management systems. It can be used to ensure
that remote operations are in a visible order that
respects causality. Saturn has been evaluated in
Amazon EC2 and the work demonstrates that weakly
consistent datastores can provide an improvement (via
causal consistency) over eventually consistent models.

VI. Conclusions

Serverless is an emerging cloud service that sim-
plifies and facilitates development and deployment of
highly concurrent and scalable applications. Despite
its popularity and wide-spread availability, developer
support is limited to only basic logging. With this paper,
we take an initial step to address this limitation with
GammaRay, a cloud service that tracks causal depen-
dencies across functions and through cloud services for
serverless applications.

GammaRay is the first tool to track dependencies
through cloud services. We investigate three differ-
ent ways of engineering GammaRay and evaluate the
overhead of each using serverless micro-benchmarks
and applications. We implement GammaRay for AWS
Lambda Python applications and show that it is pos-
sible to leverage existing cloud services for much of
its implementation. For the applications, GammaRay
introduces 12-43% execution overhead and 1-7% mem-
ory overhead on average (once free tier use [5] is
exhausted). This translates to $0.00000004 per Lambda
and $0.03315 per hour for maintaining the DynamoDB
stream, which is less than 4 cents per hour for repeated
execution of the Lambda applications that we consider.
GammaRay also incurs a $0.2/hour EC2 charge to per-
form the data analysis concurrently in the background.
As part of future work, we are converting the event
processing engine that implements this analysis to a
Lambda application to significantly lower this cost.

References

[1] “Amazon Serverless computing or Google Function
as a Service (FaaS) vs Microservices and Con-
tainer Technologies,” https://www.yenlo.com/blog/
amazon-serverless-computing-or-google-function-as-a-service-
-faas-vs-microservices-and-container-technologies [Online;
accessed 1-Nov-2016].

[2] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless
computation with openlambda,” in Proceedings of the 8th
USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’16, 2016.

[3] A. Avram, “FaaS, PaaS, and the Benefits of the Serverless
Architecture,” https://www.infoq.com/news/2016/06/
faas-serverless-architecture, [Online; accessed 15-Nov-2016].

[4] “AWS Lambda,” https://aws.amazon.com/lambda/, [Online; ac-
cessed 15-Nov-2016].

[5] “AWS Lambda Pricing,” https://aws.amazon.com/lambda/
pricing/, [Online; accessed 14-September-2017].

[6] “Exploiting Parallelism and Scalability: Report on an
NSF-Sponsored Workshop,” http://people.duke.edu/~bcl15/
documents/xps2015-report.pdf, [Online; accessed 14-
September-2017].

[7] G. McGrath and P. R. Brenner, “Serverless Comput-
ing: Design, Implementation, and Performance,” in
Distributed Computing Systems Workshops, 2017.

[8] “AWS X-Ray,” https://aws.amazon.com/xray/, [Online; accessed
11-September-2017].

[9] L. Lamport, “Time, clocks, and the ordering of events in
a distributed system,” Commun. ACM, vol. 21, no. 7, pp.
558–565, Jul. 1978. [Online]. Available: http://doi.acm.org/10.
1145/359545.359563

[10] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W.
Hutto, “Causal memory: definitions, implementation, and
programming,” Distributed Computing, vol. 9, no. 1, pp.
37–49, Mar 1995. [Online]. Available: https://doi.org/10.1007/
BF01784241

[11] R. Schwarz and F. Mattern, “Detecting causal relationships in
distributed computations: In search of the holy grail,” Distrib.
Comput., vol. 7, no. 3, Mar. 1994.

[12] N. M. Chakarat Skawratananond and V. K. Garg, “A Lightweight
Algorithm for Causal Message Ordering in Mobile Computing
Systems,” 1999, "http://www.utdallas.edu/ neerajm/publication-
s/conferences/causal.pdf" Accessed 15-Sep-2017.

[13] Amazon Web Services, “AWS Dy-
namoDB Streams Best Practices,”
"http://docs.aws.amazon.com/amazondynamodb/latest/developer"
"guide/Streams.Lambda.BestPracticesWithDynamoDB.html"
Accessed 18-Sep-2017.

[14] V. Budilov, “Use Amazon Rekognition to Build an
End-to-End Serverless Photo Recognition System,”
"https://aws.amazon.com/blogs/ai/use-amazon-rekognition-
to-build-an-end-to-end-serverless-photo-recognition-system/"
Accessed 15-Sep-2017.

[15] M. Raynal, A. Schiper, and S. Toueg, “The causal ordering
abstraction and a simple way to implement it,” Inf. Process.
Lett., vol. 39, no. 6, pp. 343–350, Oct. 1991. [Online].
Available: http://dx.doi.org/10.1016/0020-0190(91)90008-6

[16] A. Schiper, J. Eggli, and A. Sandoz, “A new algorithm
to implement causal ordering,” in Proceedings of the 3rd
International Workshop on Distributed Algorithms. London,
UK, UK: Springer-Verlag, 1989, pp. 219–232. [Online].
Available: http://dl.acm.org/citation.cfm?id=645946.675010

[17] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance monitor-
ing and root cause analysis for cloud-hosted web applications,”
in Proceedings of WWW 2017 (to appear), April 2017.

[18] Wikipedia, “Monkey Patch,” "https://en.wikipedia.org/wiki/Mon"
"key_patch" Accessed 15-Sep-2017.

[19] “AWS SDK for Python (Boto3),” https://aws.amazon.com/
sdk-for-python/, [Online; accessed 14-September-2017].

[20] “Fleece,” https://github.com/racker/fleece, [Online; accessed
11-September-2017].

[21] graphviz.org, “Graphviz - Graph Visualization Software,”
"http://www.graphviz.org" Accessed 18-Sep-2017.

[22] A. P. et al, “A comparison of approaches to large-scale
data analysis,” "http://dl.acm.org/citation.cfm?id=1559865"
Accessed 15-Sep-2017.

[23] B. Lyston, “Ad Hoc Big Data Processing
Made Simple with Serverless MapReduce,”
"https://aws.amazon.com/blogs/compute/ad-hoc-big-data-
processing-made-simple-with-serverless-mapreduce/"
Accessed 15-Sep-2017.

[24] Amazon Web Services, “AWS X-Ray Segment Documents,”
"http://docs.aws.amazon.com/xray/latest/devguide/xray-api-
segmentdocuments.html" Accessed 18-Sep-2017.

[25] “Student’s T-Test,” https://en.wikipedia.org/wiki/Student’s_
t-test [Online; accessed 22-July-2017].

[26] K. Shvachko, H. Kuang, S. Radia, and R. Chansler,
“The Hadoop Distributed File System,” in
IEEE Symposium on Mass Storage Systems and Technologies,
2010.

[27] J. Dean and S. Ghemawat, “Mapreduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51,
no. 1, pp. 107–113, 2008.

[28] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: cluster computing with working sets,” in
USENIX conference on Hot topics in cloud computing, vol. 10,
2010, p. 10.

[29] “Serverless Framework,” https://serverless.com/, [Online; ac-
cessed 11-September-2017].

[30] “Docker-lambda,” https://github.com/lambci/docker-lambda,
[Online; accessed 11-September-2017].

[31] J. Spillner, “Snafu: Function-as-a-service (faas) runtime design
and implementation,” CoRR, vol. abs/1703.07562, 2017.

[32] “New Relic Monitors Serverless Computing with AWS
Lambda Integration,” https://blog.newrelic.com/2016/11/29/
aws-lambda-integration-serverless-infrastructure/, [Online; ac-
cessed 11-September-2017].

[33] “Dashbird,” https://dashbird.io/, [Online; accessed 11-
September-2017].

[34] “Zipkin,” http://zipkin.io/, [Online; accessed 11-September-
2017].

[35] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper,
a large-scale distributed systems tracing infrastructure,”
Google, Inc., Tech. Rep., 2010. [Online]. Available: https:
//research.google.com/archive/papers/dapper-2010-1.pdf

[36] P. Bailis, A. Fekete, A. Ghodsi, J. Hellerstein, and I. Stoica,
“The potential dangers of causal consistency and an explicit
solution,” in Proceedings of the Third ACM Symposium on
Cloud Computing, ser. SoCC ’12, 2012.

[37] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Sto-
ica, “X-trace: A pervasive network tracing framework,” in
USENIX Conference on Networked Systems Design and
Implementation, 2007.

[38] R. Escriva, A. Dubey, B. Wong, and E. Sirer, “Kronos: The design
and implementation of an event ordering service,” in European
Conference on Computer Systems, ser. EuroSys ’14, 2014.

[39] W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen, “Don’t
settle for eventual: Scalable causal consistency for wide-area
storage with cops,” in ACM Symposium on Operating Systems
Principles, 2011.

[40] P. Bailis, A. Ghodsi, J. Hellerstein, and I. Stoica, “Bolt-on causal
consistency,” in ACM SIGMOD International Conference on
Management of Data, 2013.

[41] M. Bravo, L. Rodrigues, and P. V. Roy, “Saturn: A dis-
tributed metadata service for causal consistency,” in European
Conference on Computer Systems, 2017.

