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ABSTRACT

We investigate the design and implementation of Where’s The
Bear (WTB), an end-to-end, distributed, IoT system for wildlife
monitoring. WTB implements a multi-tier (cloud, edge, sensing)
system that integrates recent advances in machine learning based
image processing to automatically classify animals in images from
remote, motion-triggered camera traps. We use non-local, resource-
rich, public/private cloud systems to train the machine learning
models, and “in-the-�eld,” resource-constrained edge systems to
perform classi�cation near the IoT sensing devices (cameras).

We deploy WTB at the UCSB Sedgwick Reserve, a 6000 acre site
for environmental research and use it to aggregate, manage, and
analyze over 1.12M images. WTB integrates Google TensorFlow
and OpenCV applications to perform automatic image classi�cation
and tagging. To avoid transferring large numbers of training images
for TensorFlow over the low-bandwidth network linking Sedgwick
to public clouds, we devise a technique that uses stock Google
Images to construct a synthetic training set using only a small
number of empty, background images from Sedgwick. Our system
is able to accurately identify bears, deer, coyotes, and emtpy images
and signi�cantly reduces the time and bandwidth requirements
for image transfer, as well as end-user analysis time, since WTB
automatically �lters the images on-site.
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1 INTRODUCTION

Wildlife monitoring plays a key role in a wide range of scien-
ti�c activities and societal interests. Understanding animal be-
havior and activity pa�erns [3] is useful for evaluating biodiversity
and changes in habitats and land use, avoiding dangerous human-
wildlife encounters [32] and destructive habitat overlap, monitoring
species health and population dynamics, and providing people with
high impact educational experiences. Digital photography provides
an e�ective, non-intrusive way to monitor wildlife for many of
these applications. It is safe, cost e�ective, and accessible to peo-
ple with a wide range of expertise and backgrounds. To scale the
process of wildlife monitoring in remote locations researchers are
increasingly turning to automatically activated, ba�ery or solar
powered cameras equipped with motion detection sensors and net-
work connectivity (e.g. radios or WIFI), (i.e. camera traps or trail
cameras) [7, 38].

Despite the success of these technological approaches there are
still several challenges that scientists and citizen scientists face in
classifying images and identifying animals in images. First, auto-
matically activated cameras can generate an enormous number of
images (especially when motion-triggered), making it time con-
suming if not infeasible to perform classi�cation and identi�cation
manually. Second, the remote locations of the cameras (in the wild)
can make it costly (in terms of time and/or monetary cost) to up-
load images to the Internet where they are increasingly stored,
processed, and shared. And �nally, motion sensors commonly trig-
ger events due to non-animal activity (e.g. the wind or rain), for
animals of no interest to a particular study, or redundant pictures of
the same animal in slightly di�erent poses, introducing signi�cant
overhead (to copy, store, communicate, and analyze unimportant
images) in the classi�cation process.

In this paper, we address these challenges with the design and
implementation of a new wildlife monitoring system that leverages
recent advances in the Internet-of-�ings (IoT) and in open source
image processing and deep learning [37] for image recognition,
to automate image classi�cation and analysis. Our system, called
Where’s The Bear (WTB), is an end-to-end, distributed data acqui-
sition and analytics system that implements an IoT architecture
consisting of of sensors (cameras), “edge clouds,” and a back-end
public or private cloud. We describe a specialization of this archi-
tecture for wildlife monitoring and a novel integration of image
processing so�ware for scalable image classi�cation (animal identi-
�cation). WTB is extensible in that di�erent algorithms for animal
classi�cation and image processing can be easily integrated (i.e.
“plugged” into the system) via application programming interfaces
(APIs) and wrapper scripts. �e key innovation is that WTB per-
forms classi�cation near where the images are produced to avoid
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unnecessary image transfer (of unimportant, redundant, or empty
images) over expensive, long-haul, and/or low bandwidth network
links.

We implement WTB using open source so�ware and “o�-the-
shelf” inexpensive equipment to ensure its accessibility to a broad
audience of users. For the experiments we describe, we integrate
Google TensorFlow [1] for image recognition and OpenCV [6]
for image analysis withinWTB. We also present a novel training
technique for our TensorFlow animal image classi�er that leverages
the WTB architecture by using freely available, labeled images
from cropped Google Images [15] instead of a training set from the
camera traps. By doing so, this technique avoids transferring a large
training set to a private or public cloud where there is su�cient
computational capacity to train a TensorFlow model. Instead our
approach combines a small number of empty images from our
camera traps at di�erent times of the day with images of animals of
interest taken from Google Images. �at is, we construct training
images by creating a montage of an empty background from the
camera traps with Google Image examples of di�erent animals. We
generate thousands of these “fake” images automatically overlaying
the animal images the camera trap background (empty image) in
di�erent orientations and illumination levels. �is process produces
a very large training dataset with which we train a TensorFlow
model – without ever requiring an image containing an animal
from the camera traps be part of the training set.

We implement our system at the UCSB Sedgwick Reserve, an
ecology and wildlife educational and research reserve [35]. �e re-
serve is 6,000 acres that comprises critical wildlife habitats, two wa-
tersheds at the foot of Figueroa Mountain, and a 300 acre farm ease-
ment. Sedgwick has 11 camera trap locations and high bandwidth,
wireless networking throughout much of the property. Its meeting
house is connected to the UCSB campus via a lower-bandwidth mi-
crowave radio link. WTB at Sedgwick currently integrates nine of
cameras which have collected over 1 million images (approximately
550GB of data).

We evaluate the performance of WTB and its accuracy in clas-
sifying bears, deer, and coyotes for one of the Sedgwick camera
traps with over 600K images. Our results indicate that by training
a model in a public or private cloud and then using it to classify
images “at the edge” near where the images are gathered drastically
reduces the time and expense associated with the classi�cation pro-
cess. Further, the automated image classi�cation method enables
high accuracy with few false positives and false negatives, making
it possible to replace what had become a tedious, error prone, and
ultimately infeasible manual process. Finally, we investigate the
extensibility of WTB by using it to integrate image classi�cation
with optical character recognition (OCR) to label each image with
additional metadata. For example, we �nd that we are able to ex-
tract temperature values recorded by each camera from the images
with 100% accuracy.
In summary, with this paper, we contribute

• An integration of multiple disparate technologies (sensor
data aggregation and management with automatic image
processing using advanced machine learning techniques
as “black boxes”) into an end-to-end system for wildlife
monitoring,

• A distributed IoT architecture that is customized for this
application domain, which leverages edge cloud systems to
implement image and sensor data processing and storage
near where the data is generated, and

• An empirical evaluation of the bene�ts that this architec-
ture enables.

In the sections that follow, we overview the challenges of wildlife
monitoring faced by Sedgwick scientists and present the design
and implementation of WTB. We then evaluateWTB for a subset
of the images collected by Sedgwick camera traps. We measure
accuracy of the machine learning technologies that we integrate
intoWTB and our use of “fake” images for training. We also report
the amount of time and bandwidth thatWTB saves if we are able
to �lter the images at the source. We then present related work and
conclude.

2 WTB: END-TO-END IOT-CLOUD SYSTEM

FORWILDLIFE TRACKING

�e goal of our work is to simplify and expedite the process of
animal identi�cation using images from motion-triggered cameras
deployed in the wild. Our experimental se�ing is the UCSB Sedg-
wick Reserve located 40 miles from the UCSB campus in Santa Ynez,
CA. Sedgwick is a research and educational reserve for study of
environmental stewardship and protection, restoration of natural
biological systems, and technology-driven agriculture [24]. Sci-
entists from �elds including ecology, biology, computer science,
geography, and others use parts of the over nine square miles of
the Sedgwick property to perform measurement, experimentation,
demonstration, and hands-on and multi-disciplinary pedagogy. As
a research reserve, there are a small number of structures with elec-
tricity and Internet connectivity, but they are clustered together in
one location on the property – the remainder of the reserve is wild.

Many Sedgwick scientists and management personnel are inter-
ested in monitoring the wildlife at Sedgwick for various purposes
including to estimate population size and health for di�erent locally
occurring species, to identify changes in animal behavior pa�erns
due to external forces (drought, human activity, invasive species),
to identify/prosecute illegal hunting activities, and to track and re-
cover stray grazing livestock. To facilitate these activities, Sedgwick
manages 11 camera traps at watering holes and popular animal
pathways throughout the property. Some cameras have support for
wireless communications, while others require manual download of
the images using storage cards. �e Sedgwick sta� plans to convert
all to WIFI for download over time.

Figure 1 shows the map of the property with the camera traps
and headquarters building identi�ed (in green). �e headquarters
building is connected to the UCSB Campus network via a long-
distance microwave radio link and wireless connectivity is avail-
able directionally between the headquarters and each camera trap.
�e average bandwidth between the cameras and headquarters is
approximately 114 Megabits per second (Mbps). �e connectivity
between headquarters and the UCSB campus (which must traverse
several microwave links) rarely exceeds 5 Mbps even for optimized
�le transfer.

We use one camera trap (called Main) in this study to evaluate
our system. We mark this camera in red on the map. �e distance
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Figure 1: UCSB Sedgwick Reserve with Camera Traps and

Headquarter Building Icons. �e reserve is approximately

9 square miles in size and the distance between the camera

(red camera icon) and headquarters (dark green house icon)

is 3.05km. �ere are 11 trail cameras on the property in to-

tal. �e northeast corner boarders Los Padres National For-

est (light green).

between the camera and headquarters is 3.05km. We store camera
trap images on a computer system in the headquarters building
for on-site analysis; researchers copy the images to campus or via
Internet to other organizations for sharing with others and for
analysis and processing. �e cameras collect images continuously
and to date they have been in use intermi�ently over the past 3
years to collect over 1.12M images (716.3 GB).

�is technology con�guration and work�ow presents multiple
challenges for scientists and researchers a�empting to analyze
these images. First, they must copy the images from Sedgwick to
UCSB or another Internet site where the necessary so�ware and
su�cient computational resources are available. Given Sedgwick’s
remote location, connectivity between it and the main campus or
the Internet is intermi�ently available and imposes high overhead
on such copies.

For example, copying the 638,062 images from the Main cam-
era alone, between Sedgwick headquarters and campus, took re-
searchers 13 days. Given that public cloud services, including Ama-
zon Web Services (AWS) Simple Storage Service (S3) and Box.com
(which we have tested as part of this project), limit the transfer
speed and access frequency to and from their sites for stability and
fair sharing purposes, transfer of the Main camera images to these
services from Sedgwick headquarters took 14.92 days and 13.09
days, respectively. Such delays are costly in terms of time, result
in many copies of the images (wasted storage), and preclude the
use of real time processing and actuation (e.g. thwarting poachers,
detecting escaped livestock) based on the images at Sedgwick.

Figure 2: IoT-Edge Architecture for WTB. Adding an Edge

Tier capable of low-latency, high bandwidth, high availabil-

ity, low cost communications and fast response to/from the

Sensing Tier. We de�ne a new computing entity for the Edge

Tier called the edge cloud that mirrors the functionality of

popular public cloud systems at a smaller scale, to provide

advanced data fusion and complex analytics via a Cloud Ser-

vice Distribution Network to the Sensing Tier. �e Private/-

Data Center Tier provides similar functionality as Public

Clouds for data and compute (so�ware) but with privacy, se-

curity, and cost control. �e high latency, variable, intermit-

tent, and costly connectivity to the PublicCloudTier is lever-

aged for long term data backup and latency-tolerant batch

processing only if/when needed (on-demand).

Second, transmi�ing all images wastes bandwidth (and power),
since many contain no animals (motion detectors are triggered
by wind and weather events), or they contain repeated images of
the same animal (time lapsed) in slightly di�erent poses, or they
contain animals of no interest to a particular study. Moreover,
classifying images by hand is time consuming (expensive), tedious,
and ultimately infeasible. For example, we found that 10 dedicated
students can process (label) 2500 of our images in approximately
2 hours. Some techniques and online services are available for
automatically classifying images but are only available in “the cloud”
and as such, require upload over slow, long-haul networks. �e
�nal issue is that although many new automated techniques for
image processing and classi�cation have emerged and are freely
available, they require extensive technical expertise and signi�cant
experience with machine learning to be used e�ectively.

To address these challenges, we pursue an IoT approach to cam-
era trap image classi�cation that, using edge clouds, “brings the
cloud to the data” to avoid unnecessary data transfer from the IoT
sensors (cameras) to the point of analysis, and that simpli�es the
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classi�cation process (no prior knowledge of cloud computing or
machine learning is needed). To enable this, we build upon and
extend existing approaches to IoT that a�empt to lower latency via
in-network processing of data (aggregation, �ltering, caching) near
where the IoT devices generate data and where IoT applications
consume it – at the edge of the network as depicted in Figure 2.
�e use of an edge tier as shown in the �gure is referred to var-
iously as edge networking, fog computing, edge computing, or
cloudlets in the literature [5, 8, 10, 14, 36]. literature. In addition,
we encapsulate image processing techniques into this system so
that they can be easily employed as “black boxes”, i.e. via automatic
con�guration and deployment, enabling their use for customized
image classi�cation by non-experts.

Our approach, called WTB, is a distributed system that imple-
ments the multi-tier IoT architecture depicted in the �gure. We
employ our campus cloud computing infrastructure (UCSB Aristo-
tle [4]) for the Private Cloud Tier. We use AWS and Box.com for the
Public Cloud Tier. �e sensing tier includes the Sedgwick camera
traps and other sensors (weather stations) located on the property.
Unique to our approach is the ability migrate cloud-based applica-
tions to an Edge Tier where they are hosted by one or more “edge
clouds.”. Instead of performing only caching and simple �ltering
near the Sensing Tier, we propose, develop, and deploy edge clouds
that are capable of implementing advanced computing and analyt-
ics as an appliance – with li�le or no expert system administration
or programming skills required for operation.

Our edge cloud appliance is a scaled-down, open source, highly
available, version of the AWS public cloud infrastructure imple-
mented using Eucalyptus [26]. �at is, we con�gure a small cluster
of computers (currently six 4-core computational “bricks” [20]) with
this open source distributed system that mirrors Amazon’s public
Elastic Compute Cloud (EC2) and Simple Storage Service (S3). �e
use of Eucalyptus enables our edge cloud to run any so�ware or
services that run on EC2 and/or use S3, without modi�cation, so
that we are able to leverage the vast repositories of open source
data analysis, machine learning toolkits, and web services available
today with no porting e�ort.

Moreover, the high availability con�guration of Eucalyptus en-
ables us to construct a self-managing, resource constrained system
without an IT sta� to manage it (an appliance). If/when components
fail, the edge cloud automatically recon�gures itself to operate us-
ing only the remaining nodes and disks until insu�cient resources
cause total system failure. Users of edge cloud services access
the so�ware and data (camera trap images in this case) via their
browsers as they would any other Internet service or website. �e
edge cloud is located in the Sedgwick headquarters building and
IoT devices at Sedgwick connect directly to it using the Sedgwick
private wireless network.

In this paper, we customize this multi-tier architecture for remote
camera trap image processing applications (theWTB system). WTB
implements a so�ware stack that automates image processing via
advanced machine learning technologies that classify images of
animals. �usWTB is able to extract images with animals (or other
characteristics) of interest and transmit them to end users and cloud
services for further processing or sharing, signi�cantly reducing
bandwidth use, transfer delay, and end user storage requirements.
Doing so also reduces the latency associated with classi�cation

Figure 3: �eWTB System.

(since it is performed on-site), which enablesWTB to use results
from its image processing for realtime control and actuation of other
IoT sensors and devices at Sedgwick (to control sensormeasurement
frequency, remote release of water to the watering holes, sending
of alerts, etc.).

2.1 WTB Implementation

Our WTB deployment for Sedwick Reserve is depicted in Figure 3.
Cameras connect to the Sedgwick private network via radio links
where available. �e cameras consist of di�erent makes and models.
�e one we target is this work is a Reconyx HC500 Hyper�re. We
currently have 638,062 images (205.5GB) from this target camera
trap and of these, we consider only day images (due to time con-
straints), which we consider to be between 9AM and 4PM year
round. �e images were taken for 897 days between July 13, 2013
and Aug 10, 2016 a. Of the 638,062 images, there are 260,159 day
images with an average of 290 day-images per day for this camera.
We show an example image from this camera trap in Figure 4.

Our WTB edge cloud implements Eucalyptus v4.1 and is con-
�gured with high availability (HA). �e edge cloud comprises 6
6th-generation Intel “Next Unit of Computation” (NUCs [20]). Each
NUC has a 4-core i7 processor and 45W thermal design power
(TDP). �e edge cloud also includes an Uninterrupted Power Sup-
ply (UPS), a gigabit Ethernet switch, a total of 1 TB of storage
(with 2× redundancy con�gured), and a wireless access point (for
communication with IoT devices on the property). �e switch is
connected to the main Sedgwick network linking the reserve to
the main UCSB campus networking infrastructure via a series of
microwave radio links that connects Sedgwick to UCSB via Santa
Cruz Island.

2.2 WTB Image Processing

WTB processes and �lters the images automatically so that only
those of interest to the end user (scientist) require transfer and
remote storage. To enable this, we de�ne a work�ow engine that
runs over Eucalyptus (as a Linux virtual machine instance), that is
“pluggable”. �at is, we store the images in a disk volume that we
make available for network a�achment to virtual machine instances
(that process the images). Within an instance, any machine learning
or image processing toolkit that can process JPEG encoded images
can be used to process and �lter images.

aDuring this period, the camera was down for 11 months (sca�ered across this time
period) for repairs and use at di�erent locations and for other purposes.
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Figure 4: Example image from the Sedgwick watering hole

understudy which is surveiled via a Reconyx HC500 Hyper-

�re.

To enable this, we provide a toolset wri�en in the Python pro-
gramming language and deployed in the edge cloud that automati-
cally deploys virtual machine instances and disk volumes, and that
invokes the image processing application. �e disk volume stores
the images using a POSIX-based hierarchical directory structure
based on the date of the image, e.g. /imageSetID/YYYY/MM/DD,
at the root of the mounted �le system in the instance, for easy,
uniform access by applications. �e toolset interface requires that
image processing applications read images from the directories and
return a list of image �lenames that they deem “of interest”. �e
toolset can make the resulting images of interest available via a web
service for browser-based viewing. Or it can perform a remote copy
of them to cloud storage on the UCSB campus or to an Internet
service. We currently support Internet services AWS S3, Box, and
Dropbox.

As part of this experiment, we have investigated the integration
of two applications intoWTB: Google TensorFlow [1] and OpenCV
Optical Character Recognition (OCR) [27] with JPEG processing [13,
28]. We “plug” these applications into theWTB system via theWTB
wrapper and use them to process and �lter Sedgwick images on-site
using the WTB edge cloud.

Google TensorFlow is an open source library for machine learn-
ing and deep neural networks [1]. It de�nes an Application Pro-
gramming Interface (API) that facilitates its use for a wide variety
of machine intelligence applications. Many tools for working with
TensorFlow on speci�c machine learning problems have been de-
veloped and released as open source by Google researchers and
the community. In this work, we leverage the tools for de�ning,
training, and evaluating models, for competitive networks in the
�eld of image classi�cation [2, 12, 16, 21, 30, 31]. In particular, we
use Inception-V3 [31] a computer vision model for recognizing
objects in images. �e model is trained using images from the 2012
ImageNet [11] Large Visual Recognition Challenge. �e model is
one of the most successfully developed to date, recognizing objects
ImageNet images with an error rate of around 4%.

Researchers such as ourselves, interested in using TensorFlow
and the Inception-v3 model for image classi�cation, do so by re-
training the model for a particular class of images. For example, one
technically adept Japanese farmer used TensorFlow successfully

for classifying cucumber quality using images of cucumbers (to
automate the manual process for doing so that the farm had used
to date). Retraining the model required over 7000 images of cu-
cumbers and 2—3 days using very powerful, GPU-based computing
systems [29].

Given the processing requirements for training themodel and the
limited processing capability and storage capacity of our edge cloud,
we separate the training process from classi�cation. Classi�cation
requires signi�cantly less processing power versus training and
the representation of the resulting trained model is small. �us
our approach is to train the model on the campus or public cloud
and then transmit the model to the edge cloud where the images
are being produced (at the edge) to perform image classi�cation
locally. Note that it is necessary to be able to run the same version of
TensorFlow during the training phase and the classi�cation phase
if the process is to be automated. By ensuring that the edge cloud is
capable of running the same so�ware as the private or public AWS
cloud, we ensure that the model produced by TensorFlow during
the training phase will work correctly at the edge for classi�cation,
and that we can automate the process end-to-end.

To keep training time and cost to a minimum in the public/-
campus cloud,WTB uses transfer learning [34]. Transfer learning
is a technique that shortcuts the training process by leveraging a
fully-trained model for a set of categories such as those in ImageNet
(Inception-v3), and retrains using existing weights for new classes.
�e problem with such an optimized approach is that retraining of
the model requires access to images similar to the those we wish
to classify (Sedgwick camera trap images). A naive approach is to
transmit a large subset of images to the public/campus cloud to
perform the retraining, however doing so defeats the purpose of
processing the images and only communicating those of interest
over the long haul network between Sedgwick and UCSB and the
public cloud.

To address this challenge, we have developed a new approach
to training the model for Sedgwick cameras and animals, that pre-
cludes the need for transmi�ing a large number of Sedgwick images
to the cloud. To enable this, we generate a large number of “fake”
Sedgwick images. We depict our work�ow in Figure 5. We manu-
ally identify and transmit a small number of “empty” images from
the camera to the cloud. Empty images are those that are triggered
by motion but that do not contain animals in the image. We need
multiple empty images because of the feature changes (light, size
of water hole) throughout the 24 hour time period and at di�erent
times of the year. We expedite the process of �nding empty images
by using weather station data for Sedgwick (another IoT sensor in
WTB) and extracting windy days. We then use the date and time of
high wind events to target images that are likely to be empty. We
identi�ed and transmi�ed 250 empty day images totaling 0.1GB for
this research.

On the cloud end (campus or public),WTB implements a so�ware
system that accesses Google Images over the Internet to obtain
labeled images of each of the animals of interest (or classes). In
this study, we use bears, deer, and coyote, the three most popular
animals under study at Sedgwick. We query for images of these
animals with white or transparent backgrounds (e.g. “bear on white
background” or “bear on transparent background”. �ese queries
result in images of bears of di�erent species and, in particular,
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Figure 5: WTB TensorFlow Training Work�ow for Generating Model Used for Sedgwick Image Classi�cation.

di�erent from those commonly occurring at Sedgwick. �us it is
possible that the trained model (if e�ective) could recognize the �rst
occurrence of a species that had not been previously photographed
at Sedgwick as well as to recognize those more familiar in the area.
We then automatically subtract the background of the image from
the animal by replacing all white pixels with transparent pixels.
We perform this step by using OpenCV, an open source library of
computer vision and image processing tools and algorithms.

We next overlay the animal objects on the empty background
images from Sedgwick. We place the objects in the lower half
of the image randomly across three positions vertically and ten
positions horizontally. We also randomly �ip the images as part of
this placement. We next use the time of day and brightness on the
empty images to adjust the color contrast of the objects to match
the background. In total, we have produced 5000 fake images for
each animal. We use the 15000 fake images and 250 empty images
to retrain the TensorFlow Inception-v3 model in the cloud. We
then evaluate how well using this type of training performs in
identifying animals at Sedgwick (cf Section 3).

�e second analytics technology we plug into the WTB edge
cloud, is OpenCV Optical Character Recognition (OCR) and JPEG
processing. We do so to investigate the generality of our application-
integration approach. We use OCR to extract the air temperature
that is embeddedwithin the image itself. Our application is a Python
program that processes each image in the directory structure (vol-
ume storage mounted as a Linux �le system). �e application crops
each image (using �xed coordinates that we identi�ed manually)
and passes it to the OCR library.

We train the OCR library for each camera manually. To enable
this training, we use temperature values (cropped images) between
0 and 9 (and the minus sign), which we extract from images af-
ter performing edge detection (a built in function in the OpenCV
toolkit). We generate a training set of labeled digits by manually
entering the value of each of the digits. We store the trained model
on the edge cloud and use it with the OCR library which uses it
to recognize any unlabeled character value in a previously unseen,
cropped image, by selecting the object in the labeled set that is
most similar (using the K-nearest neighbor algorithm [23]) to the
digit being analyzed. �e OCR tool combines the digits into a tem-
perature value and reports the value back to the caller. We have
implemented the OCR tool as a library call and as a cloud service

Table 1: Sedgwick Camera Trap Statistics. We use camera

Main for the empirical evaluation of WTB in this paper.

Camera Tot. Size Avg. Img Day Images

ID Count (GB) Size (KB) Days Count Size (GB)

Blue 72900 43.39 624 324 54486 33.59
BoneH 153215 334.88 2291 350 153215 136.01
BoneT 5886 5.49 977 32 2277 2.12
Fig 24449 10.05 431 239 9919 5.61

Lisque 88183 24.41 290 219 14031 4.93
Main 638062 204.26 335 897 238489 93.81

NE 86645 39.77 481 324 43897 22.85
URes 5311 8.31 1641 24 4765 7.50
Vulture 17028 14.76 908 123 12468 12.01
WMill1 27332 27.87 1069 385 8396 9.82
WMillG 2310 0.93 421 32 1107 0.53
Total 1121321 714.12 9468 2949 543050 328.78

in theWTB edge cloud so that we can compare the performance of
the two implementation alternatives.

�e Sedgwick camera that we employ for this study stores the
temperature that it embeds in each image as part of the JPEG meta-
data of the image. Not all cameras do so and, indeed, none of the
other Sedgwick cameras have this capability. For the camera we
study, we perform and validate the OCR analysis. To validate OCR
analysis on the temperature string in the image, we compare the
output of the OCR analysis to the value recorded in the JPEG image
metadata. We compute accuracy as the percentage of time the OCR
analysis and the JPEG metadata agree.

3 EVALUATION

We use the WTB deployment at the UCSB Sedgwick Reserve to
evaluate empirically di�erent components that comprise its design.
In this section, we �rst overview the details of the deployment. We
then evaluate the accuracy and performance of the machine learn-
ing technologies that WTB integrates (TensorFlow and OpenCV
OCR). We use this evaluation to investigate the costs associated
with image transfer using di�erent cloud technologies and to mea-
sure the savings of performing image classi�cation and �ltering in
the edge tier.

We present the details of the Sedgwick camera traps in Table 1.
�e table shows for each camera name (column 1), the total number
and size (in GB) of the images each produced between July 13, 2013
and Aug 10, 2016. Column 4 is the average size of each image in
kilobytes (KB). �e �nal three columns show statistics for when
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Figure 6: Examples of Images Considered Other. Other im-

ages contain small birds and rodents. �ese images contain

are not empty but animals not of interest.

we consider only images taken during daylight hours (between
9AM and 4PM inclusively). Column 5 is the total number of days
for which we have images, columns 6 and 7 show the number and
size (in GB) of day images. Each camera uses motion detection to
trigger taking a photograph. Most triggers are caused by animals
(birds, bears, deer, coyotes, squirrels, mountain lions, bobcats, etc.).
However, the cameras are also triggered by movement of vegetation
(caused by the wind). We refer to these images as empty.

We use theWTB on-reserve edge cloud to store and automati-
cally analyze the images from the Main camera and consider bears,
deer, and coyotes animals of interest for our analysis and machine
learning study. �e edge cloud also enables access to the images by
researchers over the Internet and campus-to-reserve network. As
of August 10, we have 1.12M total images totaling over 714GB. We
have 630062 images totaling 204GB for the Main camera. �e band-
width between the Main camera and the edge cloud is 114Mbps
on average. �e bandwidth between the edge cloud and campus is
1.93Mbps for single image transfer and 4.63Mbps for optimized �le
transfer on average.

We trained a TensorFlow model using four categories of syn-
thetically generated images: Bear, Deer, Coyote, and Empty. �e
��h category – Other – contained a su�cient diversity of wildlife
to make training for it di�cult. We show two examples of images
from Other in Figure 6. �us, our approach a�empts to classify
bear, deer, coyote, and empty images from the image set but does
not a�empt to completely identify all of the images.

Table 2: Manually Classi�ed Images from random sample of

size 4890

Image Type Count
Bear 227
Deer 1795
Coyote 22
Empty 1028
Other 1818

Figure 7: Common Animal Classi�cation Accuracy Using a

TensorFlow Score ≥ 0.90 for Bear, Deer, and Coyote, for 4890

Randomly Selected Images.

3.1 Classi�cation Performance

In our �rst experiment, we investigate the e�ectiveness of our
training and classi�cation approach using 4890 randomly selected
images from the full corpus of Main day images. We classi�ed these
images manually into the �ve categories: Bear, Deer, Coyote, Empty,
and Other. Table 2 shows the number of each type of image in this
sample.

We use the WTB model to classify these images automatically.
We use the class with the highest score (highest probability) output
by TensorFlow, for which the score is at least 0.90 for Bear, Deer,
and Coyote. Figure 7 shows the accuracy of the resulting model
with respect to identifying bears, deer, and coyote, when applied to
the random sample of 4890 images.

�e error percentages in the �gure comprise both false positive
errors and false negative errors with respect to the manually labeled
images. False positive errors are those that TensorFlow says con-
tains one type of animal, but the image does not contain that animal.
False negative errors are those that are identi�ed during manual
labeling as containing a particular type of animal, but TensorFlow
fails to categorize the image as containing that animal with a score
of 0.90 or higher.

Overall, from the perspective of identifying bears, deer, and
coyote, the results are promising. �e overall “miss rate” is 13%,
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Figure 8: Examples of of False Positive Classi�cations. Ten-

sorFlow classi�ed these images as coyote (top) and bear (bot-

tom) when both contain deer.

Table 3: Correct, False Positive, and False Negative Image

Counts Using a TensorFlow Score of ≥ 0.90 for Bear, Deer,

and Coyote

Image Type Correct False Pos. False Neg.
Bear 200 16 27
Deer 1187 22 608
Coyote 12 36 10

almost all of which is accounted for by misclassi�cation of deer
images. �ese error rates (which include false positives and false
negatives) are quite low for bear and coyote images, and while
the error rate for the Deer category (12%) may seem large, it is
consistent with the 90% probability threshold which the TensorFlow
score ≥ 0.90 represents. �us, we believe that the methodology is
working correctly. We show examples of false positives in Figure 8
and examples of false negatives in Figure 9.

To determine the e�ect of these error rates on the bandwidth
usage, we detail the correct count, false positive counts, and false
negative counts for each category in Table 3. �is data indicates
that the bandwidth savings resulting from the use of an edge cloud
are substantial. If the system were a�empting only to transfer
images of bear, deer and coyote, only the false positive counts for
the each would “waste” bandwidth. Put another way, WTB would
have transferred a total of 1473 images (the sum of columns 2 and 3
in the table). Of these images, 1399 are correctly classi�ed in terms

Figure 9: Examples of of False Negative Classi�cations. Ten-

sorFlow classi�ed these images with a low score (top) and as

Empty (bottom)when the top contains a bear (or part of one)

and the bottom contains a deer running o� in the distance.

of their animal type and 74 are misclassi�cations of each animal
type. If the 74 images were strictly images of Empty or Other, they
would be completely unnecessary transfers. However many of
them are misclassi�cations within the categories of Bear, Dear, and
Coyote. Transferring these images is necessary but they would
then need to be manually reclassi�ed. �e worst-case overhead is
74 images out of 1473 total transferred or approximately 5% and,
if manual inspection of the false positives were implemented, the
true overhead is substantially less.

From Table 3, it is evident that the bulk of the Deer category er-
rors are false negatives. �at is, the system appears to be successful
at identifying bear, coyote, and deer images, but it also fails to clas-
sify correctly approximately 12% of the images as deer. However it
does not incur a similar miss rate for bear or coyote images. �us
the system is successful at answering a query of the form “What
type of animal is in this image?” but is less successful ful�lling a
query of the form “How many deer images were taken at the Main
camera.” Improving this la�er capability is also the subject of our
on-going work.

While the purpose of the experiment is to identify images of
commonly occurring species, the image corpus contains a number
of images that either contain no animals (the Empty category)
or small birds, rodents, or other fauna. Figure 10 details the the
accuracy of the model with respect to di�erentiating bears, deer,
and coyote, from empty images and images containing other species.
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Figure 10: Common Animal Classi�cation Accuracy Across

all Test images Using a TensorFlow Score ≥ 0.90 for Bear,

Deer, Coyote, and Empty for 4890 Randomly Selected Im-

ages.

Note that the error rates for bear, deer, and coyote images are the
same as in Figure 7. However in Figure 10 it is clear that the model
incurs more error when a�empting to di�erentiate an empty image
from one that may contain other features. �is �gure does indicate,
however, that our technique is be�er at identifying animal species
for which it has been explicitly trained.

3.2 Comparing to a Traditional Training

Approach

We next compare WTB to more traditional model training. Using
the traditional approach, we train the model using real images from
the Sedgwick Main camera trap that contain bear and deer, and that
are empty. We refer to results that use this model as REAL. Note
that this scenario requires that we transmit all training images to
the cloud to perform the training.

We randomly select 10000 day images and manually label them.
In this set, there are 17 corrupted images, 458 bear images, 3725
deer images, 53 coyote images, 2828 empty images, and 2919 images
containing other animals (birds and rodents in our case). Since Ten-
sorFlow requires at least 100 examples for training, we are unable
to classify coyotes using the REAL method (a second disadvantage
of a non-WTB approach). �us, we do not train or test WTB or
REAL using coyote images.

We divide the images into two sets, one containing 80% of the
images for training, and one containing 20% of the images (i.e. the
test set), which we use for evaluating the accuracy of each approach.
In the 80% set, there are 366 bear images, 2980 deer images, and
2262 empty images, for a total of 5608 training images. In the
20% set, there are 92 bear images, 745 deer images, and 566 empty
images, for a total of 1403 testing images. We train the REAL model
using the 80% training set for bear, deer, and empty. We train the
WTB using synthesized images for bear and deer and the 250 empty
images that provide the base for the synthesized images. WTB thus
does not transmit any additional images to the cloud for training.

Table 4: Comparison to Traditional Training (using real im-

ages): Classi�cation Performance for WTB versus the tradi-

tional approach (REAL) for 1403 random test images. Clas-

si�cations constitute images classi�ed by TensorFlow with

a score of 0.90 or higher for Bear, Deer, and Empty. �e data

shows the number of correctly classi�ed images (Cor.), false

positives, and false negatives (due to low scores).

WTB REAL
Image False False False False
Type Cor. Pos. Neg. Cor. Pos. Neg.
Bear 87 5 5 89 0 3
Deer 537 0 208 698 0 47
Empty 409 13 157 550 8 16

We use the same 20% sets (bear, deer, and empty images) to test
the accuracy of both models (WTB and REAL). We present the
results when we use a TensorFlow score of 0.90 or higher for Bear,
Deer, and Empty in Table 4. �is table shows the total number of
correct classi�cations (Cor.), false positives, and false negatives.

Both models perform similarly and have a very low error rate
for bears. Using WTB, 5 deer images are misclassi�ed as Bear
and 13 deer images were classi�ed as Empty. For REAL, 2 bear
images are classi�ed as Empty and 6 deer images are classi�ed as
Empty. �e false negative values represent images that are not
classi�ed correctly given the 0.90 TensorFlow scoring threshold.
WTB has signi�cantly higher false negatives for Deer and Empty
relative to traditional training. Both approaches, however, have low
overall error percentages per class whenwe consider false negatives
and false positives together. Using the traditional approach (REAL
training), the total error rate is 0.07% for Bear, 1.07% for Deer, and
0.55% for Empty. For WTB, the total error rate is 0.23% for Bear,
4.75% for Deer, and 3.89% for Empty.

Finally, we analyze images in the test set that have image types
not trained for. In this experiment, we process the images that we
manually classi�ed as Other. We did not train either WTB or REAL
using these images or classes and thus test using all 2919 images
labeled Other. We �nd that using the REAL model, TensorFlow
classi�es 94% of the images with a score of 0.90 or higher (for Bear,
Deer, or Empty). Of these images, REAL classi�es 99% of the Other
images as Empty. WTB classi�es only 46% of the images with a
score of 0.90 or higher; of these WTB classi�es 94% of the Other
images as Empty.

3.3 Network Transfer Time Savings

From the data fromTable 1 for theMain camera daytime images, it is
possible to compute the time savings thatWTBwould have enabled
for our �rst random sample of 4890 images. Table 5 summarizes
this comparison.

In our experiments, we use an unoptimized �le transfer protocol
to move data from the Sedgwick edge cloud to the Aristotle campus
private cloud [4] located on the UCSB main campus. To provide a
more realistic estimate of production usage, however, we compute
the time savings assuming that a parallel �le transfer capability
(i.e. once that uses multiple network streams) is available. Using an
optimistic estimate of 5 megabits per second (Mb/s) from Sedgwick
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to Aristotle (for parallel �le transfer), moving all 4890 images would
have required approximately 319 seconds. Alternatively, including
false positives, transferring only the classi�ed 1473 classi�ed images
would have require 96 seconds – approximately one third of the
time.

If the accuracy data shown in Figure 7 and Table 3 are repre-
sentative for the entire set of 238,489 daytime images from the
Main camera, WTB would cut down the transfer time from 19,212
seconds (5.3 hours) to 5,763 seconds (approximately 1.6 hours) as
shown in the third row of Table 5. Note also that the trained model,
which 490MB in size must be moved from UCSB to the Sedgwick
edge cloud. Assuming that the bandwidth is symmetric in both
directions, using 5 MB/s as the transfer rate, the time to move the
model is a constant 98 seconds which is insigni�cant in the context
of the full image corpus. Clearly, with respect to the edge cloud
to private cloud network connectivity, it is more advantageous to
move the code to the data than it is to move the data to the code.

However, the advantage could be overshadowed by the time
necessary to move the images from the cameras themselves to the
edge cloud. �at is, if the throughput from the cameras to the edge
is less than or equal to the throughput from the edge to the private
cloud or the public cloud, the advantage is lost. In our examples,
the cameras communicate with the edge cloud in the Sedgwick
headquarters building using high-performance directional 802.11
wireless networking that delivers approximately 114 Mb/s. �at is,
the bandwidth to the edge cloud from the cameras is more than a
factor of 20 larger than from the edge cloud to the Aristotle campus
private cloud at UCSB.

Moreover, the 5 Mb/s rate from the edge cloud to the campus
cloud is signi�cantly higher than the rate from the edge cloud at
Sedgwick to either the Box or AWS public clouds. Because these
services provide free data ingress, the transfer rates they o�er
to our project (without a premium fee) are 1.36 Mb/s and 1.61
Mb/s respectively. �e fourth and ��h rows of Table 5 show the
transfer times for the full corpus of daytime images from the Main
camera. �us the WTB edge cloud architecture o�ers even greater
network transfer time savings (by almost a factor of 3) if the data
is moved to the UCSB private cloud rather than the public cloud.
Most strikingly, however, the savings resulting from the use of an
edge cloud at Sedgwick and the Aristotle private cloud at UCSB
versus directly sending the images to Box or AWS S3 is more than a
factor of 10 (5,763 seconds versus 70,633 seconds and 59,665 seconds
respectively).

3.4 OCR Analysis

To evaluate the generality of WTB, we replace the TensorFlow
analysis plug-in with an OpenCV image analysis tool for optical
character recognition (OCR) and a utility for processing JPEG im-
ages (pyexinfo and exi�ool). We use OCR to extract the air temper-
ature that each camera prints on each picture. �e Main camera
(unlike all others in our set) also records this information in the
image metadata. We use the JPEG processing tool to extract the
temperature from the metadata. �is enables us to evaluate the
accuracy of the OCR tool since we can compare its output with that
of the JPEG processing tool.

Table 5: Data Transfer Time Comparison for Di�erent

Cloud Destinations.

Full Edge Classi�ed
Destination Image Set Images Only
UCSB Aristotle (rand. sample) 319 sec. 96 sec.
UCSB Aristotle (all Main) 19,212 sec. 5,763 sec.
Box (all Main) 70,633 sec. 17,889 sec.
AWS S3 (all Main) 59,665 sec. 21,190 sec.

We train the OCR tool as described previously. We identify
images with temperature values that cover all digits (0-9). We
expedite this search using the WTB weather sensor data which
enables us to pinpoint dates and times with di�erent temperature
values. In this study, we consider all images (day and night) from
the Main camera (638062 images).

On average, JPEG processing requires 0.01 seconds per image.
OCR when implemented as a library (wrapped via the WTB wrap-
per) requires 0.33 seconds on average per image with a standard
deviation of 0.05 seconds. We also investigated implementing OCR
as a simple web service (instead of a library). �e service processes
each image in 0.41 seconds on average with a standard deviation of
0.02 seconds. �e di�erence between the performance of the service
and the library is that the service implements the call and return as
a request/response pair via HTTP, and transmits arguments and
return values via JSON, which adds communication overhead.

Without training the OCR algorithm (i.e. using the default OCR
model in the tool), the tool is able to achieve 91% accuracy (55190
errors) across these images. With training the OCR algorithm,
WTB achieves 100% accuracy in temperature extraction. �us it is
possible to quickly extract the temperature encoded in our images
(including those without temperature values in the JPEG metadata)
and to transmit or export via HTTP, a subset of images within
queried temperature ranges by scientists and citizen scientists using
WTB.

4 RELATEDWORK

WTB integrates technologies from a number of di�erent research
areas. �ese areas include animal monitoring, image classi�cation
and object detection, and IoT-based remote sensing via integration
with edge tier systems.

In the area of animal monitoring and wild life tracking, some
early work includes usage of wearable tracking devices with GPS,
memory, and computing capabilities and can be deployed in the
wild and operate as a peer-to-peer network. [22]. A more recent
work by Huang et al. [18] uses collars as well to track animal inter-
actions. Authors demonstrate how the cost of the devices needed to
deploy animal tracking systems decreased over time. An ongoing
project, CraneTracker [3], uses a leg band tracker with multiple
sensors, including GPS and multi-modal radio, to track migration of
Cranes over 4000km from north-central Canada to southern Texas.
Mainwaring et al. [25] provide an in depth overview of the system
design requirements for tracking wild animals with the focus on
sensor networks, e�cient sampling, and communication. �eir
setup includes sensors deployment in the natural habitat, data sam-
pling, and data display through an online web interface. OzTrack
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[19] is another, more recent, example of an end-to-end system that
can store, analyze, and visualize data coming from wild life trackers.

In the area of image classi�cation for animal detection and track-
ing, Burghardt et al. [7] use human face detection to detect and track
lion faces to achieve a temporally coherent detection and tracing.
�ey further use information generated by tracker to boost the pri-
ors. Zeppelzauer [39] presents a method that can identify elephants
in wildlife videos by �rst dynamically learning their color model.
�e authors of this work use this model to detect elephants while
also considering spatially and temporally consistent detections that
appear in sequences. With this approach most elephants can be
detected with greater than 90 percent accuracy. Tille� et al. [33]
describe a use of a point model distribution to detect and track pigs
in videos. �e authors �t a model through sequences of data that
provide information on the animals’ position and posture. �ey use
the same model to capture the interaction and activities of multiple
pigs in the same frame and follow animals through the sequence
of frames. Finally, Xiaoyuan et al. [38] propose a framework that
automatically identi�es wildlife species from the pictures taken by
remote camera traps. In the process of species identi�cation they
manually crop out the animal images from the background and
then perform multiple algorithms for image classi�cation includ-
ing Sparse Coding Spatial Pyramid Matching (ScSPM) and Support
Vector Machines. �ey report 82% accuracy on average from 7000
images and 18 species.

Our work di�ers from this prior work in that we use convolu-
tional neural networks to classify our images. In addition, we do not
require learning using pictures of the animals we are a�empting to
classify. To avoid transfer of thousands of images for the learning
phase from the sensing tier to the private/public cloud tiers where
computationally and data intensive can be performed, we instead
transmit a very small number of empty images for each camera
trap at di�erent times of the day. We then automatically gener-
ate “fake” images of for training the neural network (TensorFlow
with Inception-v3 in our case) by randomly placing images of the
animals of interest (bears, deer, coyotes in our case) from Google
Images on the empty background.

Extant investigations into IoT have identi�ed the need for la-
tency reduction for sensor driven, cloud-backed applications, but
promote and pursue only content/data caching [5, 17], aggregation,
compression, and �ltering in the edge tier [8, 14], or data process-
ing using very resource restricted and mobile devices (e.g. smart
phones) [9]. WTB is unique in that it places a self-managing dis-
tributed system in the edge tier at �xed, well known locations, and
uses them to mirror the functionality available from public cloud
vendors but at a smaller scale. As such, we are able to leverage
edge clouds to perform complex analytics, machine learning, and
provide robust decision support for IoT applications at or near the
data source (with very low latency), unlike any system or service
available today.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we design, implement, and empirically evaluate an
end-to-end, IoT edge-cloud system for image processing and ana-
lytics that enables automatic wildlife monitoring in remote loca-
tions. We customize and deploy our system at the UCSB Sedgwick

Research Reserve and use it to categorize camera-trap pictures
that contain bears, deer, and coyotes. Our multi-tier IoT system,
called WTB, connects motion-triggered cameras via WIFI to an
on-reserve, Internet-connected, distributed system (which we call
an edge cloud).

We use WTB to develop a new approach to neural network
training for animal recognition in images. Since this process is
computationally intensive and requires both GPU support and a
large number of CPUs (for parallelism), model training must be
performed at the campus or public cloud. To avoid transmission of
a large number (1000s) of example (animal) images from Sedgwick
to the campus or public cloud to train with, we instead a small
number of “empty” (background-only) images. At the campus or
public cloud, we then automatically synthesize a large training data
set from them by overlaying randomly placed animals available and
easily accessible from Google Images. Once training is complete,
we ship the trained model to the images – i.e. to the edge cloud
at Sedgwick, where we perform classi�cation. By performing this
classi�cation on-site, the WTB system can then transmit only those
images containing animals of interest to each of the scientists that
request them, saving signi�cant time (both for transfer and manual
analysis) and network bandwidth.

We implement and deploy WTB between UCSB and Sedgwick
Reserve and empirically evaluate its accuracy and bandwidth sav-
ings using a large number of images from one of the Sedgwick
camera traps. We �nd that WTB achieves 0.2% error for coyote,
1% error for bear, and 12% error for deer. Compared to the tra-
ditional training approach in which we use (and transfer) actual
(non-synthesized) images, we �nd that WTB has an overall error
rate (including both false positives and false negatives) of 9% versus
3% for the traditional approach, for bear, deer, and empty images.
Moreover, WTB is able to classify images (e.g. for coyote) for which
there are too few actual images to do so using the traditional ap-
proach. Finally, we �nd that WTB can reduce network transfer over
the slow, long-haul network by 70% for the use cases we consider.

As part of future work, we are investigating how to reduce our
error rates further, and how to apply this approach to other animals
of interest. To do so, we are investigating the incorporation of
speci�c ecological details at particular sensor sites (fauna, habitat,
time of year, water availability etc.) and employing additional
animal positioning (e.g. facing toward and away from the camera)
in our image construction and training process. We also plan to
develop a noti�cation system that uses real-time feedback from
image analysis to alert authorities of poachers and to alert visitors
(hikers, students, and researchers) to potential animal presence.
Finally, we are also investigating how to implement di�erent types
of queries via image classi�cation and combining image analysis
with other types of IoT sensor and Internet data. In particular,
we are interested in using this approach to provide data-driven
decision support for sustainable agriculture processes and ranching
at Sedgwick [24].
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