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ABSTRACT

As research and implementation continue to facilitate high
performance computing in Java, applications can benefit
from resource management and prediction tools. In this
work, we present such a tool for network round trip time
and bandwidth between a user’s desktop and any machine
running a web server '. JavaNws is a Java implementation
and extension of a powerful subset of the Network Weather
Service (NWS), a performance prediction toolkit that dy-
namically characterizes and forecasts the performance avail-
able to an application. The JavaNws capitalizes on the Java
execution model to eliminate the need for NWS installation
and login accounts on the machines of interest. In addition,
we provide a quantitative equivalence study of the Java and
C socket interface and show that the data collected by the
JavaNws is as predictable as, that collected by the NWS
(using C).

1. INTRODUCTION

The Internet today provides access to distributed resources
throughout the world. The network performance available
to an arbitrary user program in this environment, however,
is highly variable. Available network performance (latency
and bandwidth) fluctuates over short time-scales making it
difficult for a user to make informed decisions about whether
or not it is practical to use the network (for distributed ex-
ecution or download) at any given time. Users have ac-
cess to a variety of network performance monitoring tools
(SNMP [4], netperf [13], pathchar [11], the Unix ping com-
mand, etc. as well as a raft of others listed with [9] and [10])
but all of these tools provide an estimate of performance con-
ditions that have already occurred. A user wishing to decide
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between two equivalent download sites must assume that
the conditions that have been observed will persist until the
download is complete. That is, the user uses the current
conditions as a prediction of what the conditions will be
a short time into the future. However, statistical analysis
of network performance data indicates that the last value
observed is rarely the best predictor of future network per-
formance [20]. Furthermore, many of the available tools for
determining current conditions do not use the same network
protocols as user applications, nor do they measure network
utilization in terms of aggregate packet traffic. To make an
effective determination, users require application level pre-
dictions of available network performance.

To solve these problems, we have developed the Network
Weather Service [21, 20, 17] (NWS) at the University of
Tennessee, Knoxville. The NWS is a distributed service
that provides users with measurements of current network
performance and accurate predictions of short-term future
performance deliverable to an application or download. The
NWS components operate with no special privileges and use
TCP/IP — a protocol commonly used in user applications
and browser downloads — to measure network availability.
The measurements are treated as time series and a set of
adaptive statistical forecasting models are applied to each
to make short-term predictions of available network perfor-
mance.

The NWS, however, requires hard collaboration between
processes. A user must install the package on his or her
own machine and understand the interfaces in order to make
queries to the NWS subsystems. At the very least, the
user must have login accounts on any machine of interest
on which NWS is not yet installed. Lastly, a user may only
be interested in the network resource; the NWS measures
and forecasts many resources, e.g., cpu, memory, etc., in
addition to the network.

In this paper, we describe an implementation of NWS func-
tionality using Java [14, 6] and applets to circumvent the
need for the user to explicitly install and maintain an NWS
network monitoring process. This tool, the JavaNws, en-
ables an arbitrary user to simply click on a link and visu-
alize the current and future, predicted performance of the
network between the desktop and the web server.

JavaNws is the first to tool to visualize NWS data dynam-



ically and continuously. JavaNws provides a framework for
user customization of resource experiments dynamically. Pa-
rameters including adjustment in periodicity, and size of
packets used in bandwidth tests, can be modified to match
those of interest by the user. In addition, no installation
or user accounts are necessary to use the robust network
prediction services of the NWS and to provide short-term
forecasts of future network performance.

The tool is completely operational and installed at the NSF
computational centers: the National Partnership for Ad-
vanced Computational Infrastructure (NPACI) and the Na-
tional Center for Supercomputing Applications (NCSA). Each
“center” offers access to machines located at various sites
throughout the U.S. Using JavaNws, users can choose the
site that will offer the best network connectivity to his or her
desktop. JavaNws has been incorporated into the NPACI
HotPage [16] — web based access facility available to NPACI
users. In addition, the JavaNws was demonstrated by NPACI
at SC99 in Portland, Oregon where it was used characterize
the performance between machines located at the conference
and different partner sites.

We selected Java [14, 6] as our implementation language for
its applet execution model as well as its wide spread avail-
ability and acceptance as an Internet computing language.
The Java execution model allows a program to be down-
loaded to a user desktop and executed locally as opposed to
remotely. This model enables us to establish an interactive
session between the applet and the remote source machine
in which we can measure the current network performance.
In addition, as research and implementation continue to fa-
cilitate high performance computing in Java, performance-
oriented Java applications will benefit from resource mea-
surement and prediction tools [18, 15, 2, 12].

This project, however, is not purely an engineering endeavor;
this study lends insight into the overhead associated with us-
ing Java TCP sockets. We discuss the differences between
the Java the C language measurements and provide a quan-
titative comparison between TCP socket implementation in
the two languages. In addition, we show that the accuracy
with which network performance can be predicted is the
same for C and Java using TCP/IP and sockets.

In the next section we detail the implementation of the Ja-
vaNws. Section 3 describes the experimental methodology
we used in this study. In Section 4.2, we analyze Java and
C performance results based on long-running performance
traces. Because statistical comparison can be difficult for
non-Normal data, we also analyze the predictability of each
methodology in Section 5. In the final sections we detail
the our future directions and conclude (Sections 6 and 7
respectively).

2. IMPLEMENTATION OF JAVANWS

The JavaNws is a Java implementation of the NWS net-
work measurement and forecasting subsystems (see [21] and
[20] for a complete description of NWS functionality and
forecasting techniques). The JavaNws provides a graphical
display of the performance data to allow users to visualize
the network performance (actual and predicted) between the
server and their desktop in real-time. For example, a user

Server Machine | User Desktop - JavaNws Applet

Experiment Session
Handshake
Round trip test / log
Bandwidth test / log
Tear down

Figure 1: The JavaNws Architectural Design

may decide to download a piece of software from an arbitrary
site on the World Wide Web (WWW). In order to determine
if the download time is feasible, he or she can first click on
a JavaNws link provided by the site to view the current as
well as future, predicted network conditions. In addition,
the download site can provide links to JavaNws at its mir-
rored sites allowing the user to use the predicted network
performance to make informed decisions about the down-
load times from each site. Previous work with the NWS
and Java-based applications indicates that basing transfer
decisions on NWS forecast data can dramatically improve
execution performance [5, 19].

The JavaNws consists of two parts: The applet that executes
on the user’s desktop and the server program (called the
Echo Server) located at the machine from which the applet
is downloaded. When a user clicks on a JavaNws link, a
Common Gateway Interface (CGI) program is executed that
invokes the Echo Server in the background and then initiates
transfer of the applet to the user’s desktop for execution.

2.1 The JavaNws Applet

The majority of the JavaNws functionality is in the applet.
This applet is a Java program that consists of a communica-
tor, a forecaster, a graph tool, and a graphical user interface
(GUI) as depicted in Figure 1. The Communicator and the
Forecaster are direct translations of the NWS C-versions.
The graph tool is an extended version of a freely available
graph display tool called XYGraph[l], and the display was
designed and implemented from scratch to enable visualiza-
tion of the graphs and to allow dynamic customization of
experiment parameters by the user.

The applet communicates with the server machine from which
it was downloaded. To measure network performance, the
Communicator conducts in a series of communication probes
between itself and the CGI-invoked Echo Server running on
the server machine. During each probe, measurements are
taken of round trip time and bandwidth. These experimen-
tal results are passed to the Forecaster so that predictions
can be made for the network performance at the next time
step. The predictions and the measurement data are then
passed to the graph tool which updates the graph with the
new values and incorporates them in the interactive display.
We briefly discuss the implementation of this design in the
following sections.

2.1.1 The Communicator
The Communicator performs a series of experiments to mea-
sure the round trip time and available bandwidth between



the desktop and the server machine. The Communicator
(client) and the Echo Server first handshake to establish
an experiment session. A protocol is then used to measure
round trip time and bandwidth. The protocol consists of a
series of packet exchanges that are timed by the Communi-
cator.

For round trip time, a two-byte packet is exchanged. To
determine the extent to which the Nagle algorithm ? ef-
fects the transfer time, two tests are performed; one with
the Nagle effect off and one with it on (in Java: setTcpN-
oDelay(false)). The Nagle algorithm is used by TCP to im-
prove network performance when many small packets are
being sent. With the Nagle algorithm, TCP waits to send
many small packets at once; if no other packets are sent,
TCP eventually forwards the small packet. We report the
round trip time with the Nagle effect to the user. The non-
Nagle-impeded round-trip time, however, is used to adjust
subsequent bandwidth measurements (discussed below).

Following the round trip time experiments, the Communi-
cator reports the measurement to the Echo Server. Next,
a probe is conducted to determine bandwidth. The applet
times a “long” transfer (64KB by default, although the tool
allows the user to set the probe duration) and calculates
the resulting bandwidth. This timed exchange consists of a
large packet from the Communicator to the Echo Server and
a 2 byte packet from the Echo Server to the Communicator
acknowledging the completion of the probe. Notice that the
complete exchange includes round-trip time as the Commu-
nicator must wait for the acknowledgement before finishing
its timing. If the user chooses a small probe size and the
round-trip time is large, this extra time can be significant.
To account for this, we subtract the predicted round-trip
time calculated from the non-Nagle exchange that occurs
previously from the time observed for a bandwidth probe.
That is, we predict what the round-trip time will be for the
bandwidth probe period and then subtract that prediction
from the actual probe time to account for the extra acknowl-
edgement time.

In this paper, we report data with and without the Nagle
effect to show the differences between the Java version and
the C, respectively. We do not reduce the bandwidth time
by the round-trip time prediction, however, as we did not
want to cloud the comparison between observed C and Java
performance with questions of forecast accuracy. Rather,
we analyze the performance of each strictly in terms of the
observed probe times.

2.1.2 The Forecaster

The Forecaster is a Java implementation of the NWS fore-
casters. A detailed description of the the NWS forecasters
can be found in [20]. In short, the Forecaster consists of a
set of independent forecasting algorithms [7, 3, 8], each of
which produces a one-step-ahead forecast from a given time

2We will refer to the combination of the Nagle small-packet-
avoidance algorithm and the delayed acknowledgement al-
gorithm (which avoids silly-window syndrome) together as
the “Nagle algorithm” throughout this paper. Although,
strictly speaking they are separate optimizations, they both
manifest themselves as potential delays in the end-to-end
observed performance.

series. At each time step, the measurement data is received
from the Communicator and compared to the forecast pro-
duced by each forecasting algorithm for that time step. The
difference between each forecast and the measurement it is
forecasting is the forecast error. The Forecaster records the
the mean square forecasting error (MSE) associated with
each forecasting algorithm. To make a single prediction for
the next time step, the algorithm having the smallest MSE
is chosen. It is this most-accurate-up-until-now forecast that
is reported to the user as the NWS prediction. Note that
the Forecaster keeps a separate time series for round-trip
time, Nagle-impeded round-trip-time, and bandwidth.

2.1.3 TheDisplay

To display the measurements and predictions in a graphical
format, we incorporate a freely available graph tool called
XYGraph [1]. The tool takes a file of data and graphs it
in various formats. We extended the tool to enable graph-
ing of a history of measurements and predictions. In order
for the display to appear continuous, the graph is redrawn
as each experiment is performed; the data values appear
to move across the graph. The forecasts are displayed one
time step ahead of the actual measurements since the val-
ues indicate the performance deliverable at the next time
step. The graphs are displayed on frames separate from the
console. Each resource has its own set of graphs generated
by the graph tool. These frames also contain information
about the experiments: the client and server host names,
the actual measurements, the forecasted measurements and
the time of each. The user can also choose to view mea-
surement data for given resource on the same graph as the
forecast data or separately.

Figure 2 shows each resource graph (for round trip time
and bandwidth) during execution with both the actual and
forecasted measurements displayed on the same graph. The
Y-axis is the round trip time in milliseconds and the band-
width in Mb/sec, for the top and bottom graphs, respec-
tively. The X-axis is the time at which the measurement
was taken; experiments were performed at approximately
12 second intervals. The dark points are the forecast data
and the light points are the actual measurements. At a time
step at which only one point appears, the forecast and the
actual measurement are the same.

The final piece of the JavaNws is a GUI that combines all of
the components together. The interface consists of an inter-
active console and graph displays. The console allows the
user to modify the parameters of the experiment. The user
can use the console to view or hide the graphs; even with the
graphs hidden, however, the summarized data is displayed
on the console and experiments continue to run. The in-
formation provided on the console includes current time, re-
source measurements (round trip time and bandwidth) from
last experiment, the next predicted value for each resource,
as well as the accuracy (measured in cumulative mean ab-
solute error) of the predictions made so far. The user can
modify the time between measurements so that they occur
every 1 second to 5 minutes. In addition, the size of the
packet in the bandwidth experiment can be 64KB, 128KB,
256KB, or 512KB. Finally, the user can use the console to
suspend and resume the experiments at any time. Figure 3
shows the console during execution.
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Figure 2: A view of the round trip time (TOP)
and bandwidth (BOTTOM) graphs in action. Dark
points are predicted values and light points are the
actual measurements. The right-most point in each
graph is the value predicted to occur in the next
(future) time step. Where there appears to be only
a single point at a given time step, the predicted
value is the same as the actual measurement (it was
correctly predicted).

= [

Vlew/Hide Round Trip Graphs
Yiew/Hide Bandwidth Graphs

Ping Interval {in seconds} — Range: 1sec to Smins

’; 5 Set Interval

Size of BW Test Packets: (® B4KE ) 128KB 1 25BKB _1512KB

Current Time: 1853113

Round Trip Mean Absolute Error 0.37 msecs
Round Trip Prediction Measure: 1,00 msecs

Round Trip Prediction for Time: 1853118

Bandwidth Mean Absolute Error 9.20 Mb/sec
Bandwidth Prediction Measure: 131.07 Mb/sec
Bandwidth Prediction for Time: 1252118

Suspend Execution |

Resume must be pressed within Smins of pressing stop

Resume Execution |

Applet started
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Table 1: Locations of Machines Used in Experi-
ments.

a-g | ash (San Francisco) to

gibson (UTK) via the Internet, Java v1.1.3
c¢-d | conundrum (UCSD) to

dsi (UTK) via the vBNS, Java v1.1.3

f-n | fender (UTK)

to ncni (UNC) via the vBNS, Java v1.1.7
p-k | pacers (UTK)

to kongo (UCSD) via the vBNS, Java v1.1.7

Table 2: Types of Machines Used in Experiments.

ash Sparc Ultra I, Solaris 5.6,

167Mhz processor, 256 memory
conundrum | Sparc Station 5, Solaris 5.6,

110Mhz processor, 64MB memory
dsi RS6000, AIX 4.3,

332Mhz processor, 200MB memory
ncni RS6000, AIX 4.3,

332Mhz processor, 200MB memory
fender x86, Linux,

400Mhz processor, 256 MB memory
gibson x86, Linux,

400Mhz processor, 512MB memory
kongo Sparc Ultra I, Solaris 5.6,

166Mhz processor, 192MB memory
pacers x86, Linux,

300Mhz processor, 512MB memory

3. EXPERIMENTAL METHODOLOGY

Table 1 gives the location of machines for each pair of hosts,
the predominant network technology separating the two,
and the version of Java that we used to generate the results
presented in this paper. The locations include San Fran-
cisco (MetaExchange.com), the University of California, San
Diego (UCSD), the University of Tennessee, Knoxville (UTK),
and the University of North Carolina (UNC). UCSD, UNC,
and UTK are vBNS sites. The vBNS is an experimental
transcontinental ATM-OC3 network sponsored by NSF that
can be used for large-scale and wide-area network studies.
It is characterized by high-bandwidths and relatively high
round-trip times induced by large geographic distance. Our
Internet connectivity is common-carrier. The types of ma-
chines and operating systems used are in Table 2. In total,
we ran experiments between 10 pairs of hosts. We include
only 4 pairs of hosts in the results due to space constraints.
The 4 data sets we have chosen are representative of all pairs
used in the experiments.

All experiments were performed at approximately 12 second
intervals over a 24 hour period on weekdays between various
machine pairs. Each experiment consisted of measurements
first taken by the Java version then by the C version 3. The
Java version is executed using a standard Java interpreter.

The Java version uses a Communicator written in Java com-
municating with a C program using Unix sockets (called the
Echo Server). The C version of the experiments uses a Com-
municator written in C communicating with the same Echo
Server. Each experiment involved an exchange using the

3We also performed the measurements in the opposite order
(C and then Java) and found similar results



Table 3: Mean and variance values of the C and Java

bandwidth data.

C Version Java Version
Host Pair || Mean | Variance || Mean | Variance
a-g 0.61 0.02 0.61 0.02
c-d 0.65 0.05 0.65 0.05
f-n 1.41 0.00 1.66 0.00
p-k 1.06 0.01 1.01 0.01

Table 4: Mean and variance values of the C and Java
round-trip time data.

C Version Java Version
Host Pair || Mean | Varience || Mean | Variance
a-g 96 890 96 1007
c-d 94 102 95 2888
f-n 49 3 49 9
p-k 95 175 96 3579

protocol described in Section 2.1.1. The raw data for two
pair of hosts (p-k: pacers (UTK) to kongo (UCSD), and c-d:
conundrum (UCSD) to dsi (UTK)) is found in Figures 4, 5,
and 6. The right graph is the data collected by the C ver-
sion; the left collected by the Java version. We accumulated
similar data for all host pairs.

4. COMPARING RAW JAVA AND C PER-
FORMANCE

The performance observed during a particular network trans-
fer is a function of the load on the network at the time the
transfer is made (as well as underlying network technology).
For the networks we used in this study, that load is con-
stantly varying. It is therefore difficult to compare the per-
formance Java and C as it is impossible to test them both
under identical load conditions. Even when the C and Java
probes are run back-to-back, the network conditions may
change between experiments making a pairwise comparison
ambiguous. Therefore, we resort to a comparison of statis-
tical characteristics generated from relatively large samples
of each, and argue for equivalence (or otherwise) based on
these characteristics.

4.1 Comparison based on Moments

Tables 3 and 4 show the sample means and variances for
bandwidth and round-trip time (respectively) between four
representative host pairs over 24 hours.

Clearly, if each sample is large enough to capture the un-
derlying distributional characteristics of the method it rep-
resents, then C and Java are almost equivalent in terms of
their first two moments. That is, while individual examples
may not be comparable, the mean performance, and the
variance in performance between C and Java are equivalent.
Unfortunately, since the data is not well approximated by
Gaussian distributions, it is difficult to determine the sta-
tistical significance of this comparison rigorously. Instead,
we observe that in terms of mean (the average behavior)

and variance (the average deviation from the mean value)
C and Java performance are similar. Often this colloquial
level of similarity is within engineering tolerance for many
applications.

4.2 Comparison based on Regression Coeffi-

cients
Another sample-based technique is to calculate the regres-
sion coefficient between samples. We pair values from each
sample together based on time stamp (two values taken
nearest in time form a pair) and then calculate the linear co-
efficients based on least-squares regression. Our motivation
is to observe how close the derived multiplicative constant
is to 1.0 for the different traces. Table 5 shows the results.

The regression coefficient indicates the degree to which C
and Java are proportional with respect to their respective
means. A value near 1.0 that the best way to predict a Java
value from a C value is to multiply the C value by 1.0.

The first column of Table 5 is for bandwidth, the second for
round trip time, and the third for round trip time with the
Nagle effect. When two sets of measurements come from
the same series the least square regression value of their dif-
ferences is very close to 1.0. This value also provides an
estimate of the percent difference between the average mea-
surements (it is the coefficient that the Java value is is mul-
tiplied by to get a corresponding C value). If the figure is
less than 1.0, then the Java version reported measurements
that are less than those reported by C (higher round trip
times and lower bandwidth values). For example, the table
shows that for the pair a-g (ash-gibson), the Java bandwidth
measurements are 1% less on average than the C bandwidth
measurements. The round trip time without and with the
Nagle effect measurements for this pair of hosts are (on av-
erage) 7% and 13% slower, respectively, than that of the C
version for this link.

The least squares regression coefficient is impacted by out-
liers in the data. For bandwidth, there were no obvious out-
liers. For round-trip time, however, there were occasional
values that deviated by two or three orders of magnitude.
We do not believe that these values are representative of C
or Java effects but rather catastrophic network failures. In
order to rectify this problem and report a value unaffected
by outliers, we removed outliers for certain experiment sets.
The number of values removed were: a-g (2), and f-n (4).
The total number of values in each trace is approximately
7200 (every 12 seconds for 24 hours) making these outliers
very infrequent. A thorough investigation of the hypothesis
that these outliers result from network behavior (and not C
or Java performance) is the subject of our future work.

If the least squares regression coefficient is greater than 1.0,
then the Java version reported measurements that, on aver-
age, were better than that of the C version. Notice that in
c-d and f-n the bandwidth measurements from the Java ver-
sion are better (greater than 1.0) than the C version. This
condition also occurred for two other host pairs in data we do
not report here due to space constraints. We looked into this
anomaly (since we believed that in every case Java should
be slower than C due to extra processing overhead of Java
socket abstractions and interpretation) and found that the



Figure 4: Raw bandwidth data for the pairs of hosts p-k (pacers to kongo) (TOP) and c-d
dsi) (BOTTOM). The left graph are the measurements taken by the C version and the right
by the Java version.
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Table 5: Least square regression of C to Java mea-
surement values. If the coefficients are equal to 1.0,
then the values reported by the Java version are
from the same time series as the C version.

Host Pair || Bandwidth | Round Trip | Round Trip

Time Time (Nagle)
a-g 0.99 0.93 0.87
cd 1.01 1.00 0.96
fn 1.18 1.00 1.00
p-k 0.95 0.99 0.98

operating system on the server end of these three pairs of
machines were all IBM RS6000’s running operating system
(OS) AIX version 4.3. In addition, each receive operation
performed by the echo server on these machines occurred in
blocks for 512 bytes (the maximum transfer unit (MTU) set
as the default during AIX installation). On all other host
pairs, the MTU on the server machine ranged from 1KB to
2KB. When we modified the C version to send using a buffer
size of 64KB instead of 32KB, the least square bandwidth
coefficients changed to 1.00 for all such pairs. This indicates
that Java the version we incorporated used a buffers size of
64KB. Only when the receive size is 512 bytes or less, is the
overhead of sending 2-32KB buffers (as opposed to 1-64KB
buffer) apparent. We would like to control the Java buffer
size in order to ensure it is the same as in the C version, but
Java version 1.1x does not provide a mechanism for modi-
fying the buffer size. We use the 64KB buffer size C version
data for the predictability tests in Section 5. It is a notewor-
thy point, however, that the buffer size affects predictability.
For systems such as Java 1.1x (which uses undocumented,
unalterable buffer sizes) the buffer sizes used may interact
with the base OS in ways that magnify the uncertainty in-
herent in the underlying network dynamics.

Alternatively, Java 2 does provide a mechanism for setting
the buffer size on sockets. We ran a series of bandwidth
experiments on a pair of hosts (k-j) for which Java 2 was
available. JavaNws ran on a host located at UCSD (k) and
the server was located at UTK (j); and the vBNS was the
primary Network between them. The least squares fit be-
tween C and Java improved from 0.92 to 1.00 when we used
a buffer size of 32KB on both the C and Java versions, again
demonstrating the effect of buffer size on observed, end-to-
end predictability. The data (Table 6) indicates that con-
trolling the buffer size improves the performance of the Java
to equal that of the C version. In the JavaNws implemen-
tation we have developed, we use the Java 2 socket buffer
interface as available.

Another interesting insight that this data provides us with is
that the Nagle algorithm and TCP “delayed acking” strat-
egy seems to effect the Java TCP sockets to a greater extent
than C TCP sockets. This effect can be seen by comparing
the rightmost column with the middle column of Table 5.
When the Nagle algorithm is used, the Java measurements
are not as close to the C measurements as when the Nagle
algorithm is turned off. We are not, at present, able to dis-
cern the nature of this difference although we speculate that

Table 6: Least squares regression of C to Java mea-
surement values using a buffer size of 32KB in both
C and Java (using Java 2) versions.

Host Pair Bandwidth
k-j (Java 1.1.3) 0.92
k-j (Java 1.2.1) 1.00

Java and C are managing their socket buffers differently and
the result causes a slight timing difference which the TCP
optimizations magnify.

We also learned that the system-supplied data structures
used to manage the buffers in the probe programs is signif-
icant. In order for the Java version to report measurements
linearly similar to those of the C version, we had to ensure
that we used byte arrays in Java to write to the socket. This
data structure eliminates the overhead of buffering and con-
version so that the timings the Java version reported were
much closer to those from the C version.

One source of error we were not able to eliminate, however,
stems from the difference in clock precision that is avail-
able to user-level programs from Java and C. Java returns
a rounded long-typed millisecond value when the time is
queried and C returns a double value. Small differences
between C and Java performance may be caused by this
rounding effect.

5. COMPARING JAVAAND C PREDICTABIL-
ITY

Table 4 (from the previous Section) indicates that there is
a larger variance in the Java version of the round trip time
data not seen in the bandwidth data. This difference may be
due to the sample size (not enough data) or it may be an in-
dication that probe trace from the Java version is not equiv-
alent to that from the C version. Indeed, recent work indi-
cates that network performance may be heavy-tailed making
the problem of determining an appropriate sample size for
statistical significance difficult to solve.

Rather than tackling this often intractable problem, we note
that most often performance profile data is used to make
some form of prediction. If not used for fault diagnosis, per-
formance traces are almost always used to anticipate future
performance levels. A user, for example, may examine a re-
cent history of measurements to anticipate the duration a
particular network transfer he or she wishes to perform. As
such, we frame the problem of determining equivalence in
terms of predictability. Note that, again, statistical signifi-
cance is an issue. As part of our engineering-based approach,
however, we report how predictable in terms of observed pre-
diction error each series is over suitably long time periods.
Regardless of statistical significance, the prediction error is
what we observed. The consistency with which we observed
it is the basis for our conclusions.

To compare performance trace predictability, we treat each
probe trace as a time series and look at the prediction error



generated by the NWS forecasting system (described in Sec-
tion 2 and more completely in [20]). At each point in the
trace, we make a prediction of the succeeding value. The
forecasting error is calculated as the difference between a
value and the forecast that predicts it.

The advantage of this approach is that it admits the possi-
bility of the underlying distributions changing through time
(non-stationarity) since the NWS forecasting techniques are
highly adaptive. That is, we do not treat each trace as a
sample, but rather as a series, each value of which may de-
pend on the time it is taken.

The following set of graphs compare the predictability of the
data collected by the C and Java version of the NWS. Pre-
dictability can be compared using a histogram of the error
values, where the error value is the difference between the
NWS predicted value and the actual value that it predicts.
In each case, we form a histogram of 100 bins spanning the
difference between the minimum and maximum measured
values. Figures 7 and 8 contain the histograms for each pair
of hosts for bandwidth (7), and round trip time (8). The
left graph is the C version and the right is the Java version.
Clearly, the error histograms are almost identical. *

Histograms are useful for visualizing distributional data, but
prone to variation due to bin size. Indeed, the predictability
for the round trip time measurements are difficult to com-
pare using this format, hence we include data for only one
pair of hosts (p-k) in Table 8. This difficulty is due to the
the presence of infrequent but significant outlying values.
Many histogram “buckets” contain very few data elements
with one or two buckets containing the large portion of the
data. It is difficult to determine visually the contribution
that these buckets (that contain very little data each) make
to either the difference or similarity between error series.

As an alternative, we present the data in cumulative distri-
bution functional (CDF) form. Figures 9 contain the CDF's
of the prediction errors for round trip time for each host pair
and version. If overlayed, the C version CDF is nearly iden-
tical to the Java version CDF indicating that the two data
sets are equally predictable. CDF comparison of round-trip
time prediction error for data with the Nagle optimizations
enabled also shows near perfect similarity. We eliminate the
figure for the sake of brevity.

6. EXTENDING JAVANWS

One limitation of the JavaNws is due to applet execution re-
strictions; the Java applet may only communicate with the
machine from which the applet was loaded (the source ma-
chine). This prohibits measurement of the network between
the desktop and an arbitrary machine, and between two ar-
bitrary machines. It may be desirable for a user to be able
to gather this information from machines on which he has
no logins (thereby disallowing installation of the NWS by
the user). In addition, the NWS may already be installed
on many machines of interest. We are currently extend-
ing the JavaNws to access measurements taken by either
an extant installation of the NWS (of network performance

“The histograms are, indeed, so similar that we were not
able to superimpose one over the other meaningfully without
the use of color.

between arbitrary pairs of machines) or the JavaNws ap-
plet (of performance between the server and the desktop)
depending upon which is more convenient. The JavaNws
forecasters will continue to be used to predict future deliv-
erable performance, regardless of which mechanism provides
measurement data.

7. CONCLUSION

‘We have designed and implemented a Java implementation
of the Network Weather Service (NWS). JavaNws is a fully
functional tool that allows a user to visualize the current
and future, predicted performance of the network between
the desktop and any World Wide Web site. The tool cap-
italizes on the transfer model and availability of Java and
is currently being used to facilitate high-performance dis-
tributed computing with Java.

A JavaNws applet conducts a series of experiments between
the desktop and a server program executing at the site from
which the applet was downloaded. JavaNws uses the NWS
forecasting algorithms (implemented in Java) to predict the
network performance of the near-term. Bandwidth and round
trip time (using TCP sockets) measurements and forecasts
are then presented to the user in a constantly updated graph-
ical format. The user can customize the parameters dynami-
cally of the experiments (bandwidth test size, test frequency,
etc.).

In addition, we provide a quantitative study of the per-
formance differences between Java and C. We use rigorous
statistical analysis (mean/variance and least squares regres-
sion) to rule out differences between the data sets due to
population size, outlying data, and other such anomalies.
‘We show that the data collected by the Java version is equiv-
alent to that by the C version. We also compare the pre-
dictability of the JavaNws data to that of the NWS (written
in C). We compute error values (differences between pre-
dicted and actual values) using the NWS forecasting algo-
rithms to construct histograms and cumulative distribution
functions with which to compare the two sets of data (time
series). Our detailed analysis establishes that using Java
to collect the performance data does not reduce the pre-
dictability of the series, i.e., it is as predictable as that of
the C version.
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