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Abstract

Key to understanding and optimizing complex applica-
tions, is our ability to dynamically monitor executing pro-
grams with low overhead and high accuracy. Toward this
end, we present HPS, a Hybrid Profiling Support system.
HPS employs a hardware/software approach to program
sampling that transparently, efficiently, and dynamically
samples an executing instruction stream. Our system is an
extension and application of Dynamic Instruction Stream
Editing (DISE), a hardware technique that macro-expands
instructions in the pipeline decode stage at runtime.

HPS toggles profiling to sample the executing program
as required by the profile consumer, e.g. a dynamic op-
timizer. Our system requires few hardware resources and
introduces no “basic” overhead – the execution of instruc-
tions that triggers profiling. We use HPS to investigate the
tradeoffs between overhead and accuracy of different pro-
file types as well as different profiling schemes. In particu-
lar, we empirically evaluate hot data stream, hot call pair,
and hot method identification using a number of parameter-
izations of bursty tracing, a popular sampling scheme used
in dynamic optimization systems.

1 Introduction

The execution behavior and performance of high-end ap-
plications has become increasingly difficult to understand.
The reason for this is the increased complexity in programs
as well as that of the underlying hardware resources on
which they execute. To facilitate better program under-
standing by application developers, and feedback-directed
optimization by dynamic and adaptive optimization sys-
tems, we require novel techniques that enable efficient yet
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accurate collection of dynamic program behavior.
Toward this end, we present HPS, aHybrid Profiling

Support system. HPS is a hardware/software profiling sys-
tem that toggles profile collection according to the dynam-
ically changing behavior of the executing program. HPS
combines existing hardware and software techniques into a
single system and is able to extract the benefits, while avoid-
ing the disadvantages of each.

HPS extends and applies Dynamic Instruction Stream
Editing (DISE) [10], a hardware approach for macro-
expansion, i.e., automatic replacement, of executing in-
structions. Our DISE extensions enableconditional control
of instruction replacement. That is, we implement simple
conditional checks inside the DISE engine so that they can
be avoided in the the replacement process. We use DISE
productions to replace instructions of interest with instru-
mentation streams that collect profile information.

HPS also implements bursty sampling, a technique pro-
posed to enable efficient and accurate profile collection
within a Java Virtual Machine [3] and later extended for
use within a binary tracing and optimization system [6, 17].
Extant, software-based, approaches to bursty sampling are
implemented using two copies of the executable code, one
that contains profiling instructions and one that does not.
At runtime, execution control alternates between the two
copies according to execution behavior. Counters and con-
ditional checks in the unprofiled copy determine when the
number of method invocations or loop iterations warrant
sampling. When this threshold is reached, the checks trans-
fer control to the profiled copy. Execution continues in the
profiled copy for a specifiedburst length. The burst length
and return of control to unprofiled code is implemented us-
ing similar threshold-based, conditional checks.

We refer to the conditional checks and counter updates
in the unprofiled code asbasic overhead. Basic overhead
is imposed in the software-only implementation of bursty
sampling regardless of whether the code is being profiled or
not. Theprofiling overheadis the cost of executing addi-



tional profile-collection instructions and checks in the pro-
filed copy of the code.

As a result of employing a hybrid approach, HPS is able
to eliminate the basic overhead of bursty sampling and to
introduce very little profiling overhead. In addition, HPS
does so without code duplication and with minimal indi-
rect impact on program performance, e.g., memory hierar-
chy pollution, virtual memory paging, and pipeline inter-
ruption. HPS is also flexible, unlike extant hardware-based
sampling systems, in that it can transparently and efficiently
implement any profile type as well as multiple profile types
concurrently. Moreover, HPS enables efficient and dynamic
modification of profiling parameters, e.g., control-transfer
thresholds, an on/off switch for profile collection, and the
profile types collected.

To evaluate the generality of HPS, we use it to imple-
ment three different profiling types that are widely used in
dynamic optimization systems [2, 6, 7, 18] and program
memory behavior analysis [5, 17]: hot data stream, hot call
pair, and hot method profiling. We measure and report the
overhead and accuracy of each of these profile types using a
range of bursty sampling thresholds. Our results identify an
accuracy/overhead “sweet spot” for each of the profile types
that we studied. They also show that the accuracy enabled
by longer burst lengths is dependent upon the profile type.

In the following section, we detail background and re-
lated work on sample-based profiling and then describe the
DISE system that we extend in section 3. In Sections 4
and 5, we describe the design and implementation of HPS.
We then present our empirical evaluation of the overhead
and accuracy of HPS for three different profile types and a
number of bursty sampling parameterizations in Section 6.
We present our conclusions and future work in Section 7.

2 Background and Related Work

The goal of our work is efficient and accurate, sample-
based, program profiling using a combination of hardware
and software. There is a significant amount of research in
the area of program profiling. In this section, we describe
sample-based profiling techniques that are similar to or that
we employ in our system. Sampling enables low overhead
but comes at a cost in profile accuracy. Profile accuracy is
the degree to which a sample-based profile is similar to an
exhaustive profile.

Sample-based techniques have been shown to be effec-
tive when implemented in either hardware or software. Ex-
amples of hardware-based profiling systems include cus-
tom hardware that collects specific profile types [12, 14,
16, 21], systems that utilize existing hardware to col-
lect application-specific performance data [1, 19, 23], and
programmable co-processors for profiling [27] and profile
compression [24].

These approaches require no modification to application
code. In addition, hardware profilers are highly efficient
and in most cases avoid adverse, indirect effects such as
memory hierarchy pollution. The disadvantage to such ap-
proaches in addition to increased hardware complexity and
die area, is a lack of flexibility, i.e., the inability or difficulty
to re-program the hardware. For example, most approaches
implement a single profile type, e.g., instructions executed,
branches, or memory accesses. Another important disad-
vantage of hardware profilers is their use of random and
periodic sampling which cannot effectively capture the re-
peating patterns in program behavior, i.e., phases [22].

Software sampling systems offer improved flexibilty,
portability, and accuracy over hardware-based systems.
However, these systems also have significant limitations.
In particular, software sampling requires program instru-
mentation via code duplication [3, 15, 17, 22] or dynamic
binary modification [25, 26]. Such methodologies require
complex instrumentation tools (compilers, loaders, binary
instrumentors) and can consume significant computational
resources.

A recent approach to software profiling and tracing
samples an execution stream according to program behav-
ior [3, 15, 17, 22]. Such systems collect accurate profiles
with low overhead (as compared to other software-based ap-
proaches). These systems construct two copies of the code,
one that is instrumented (i.e. profiled) and one that is not,
and alternate execution control between them. Counters and
conditional checks in the uninstrumented version determine
when to commence sampling.

Execution continues in the instrumented copy for a spec-
ified burst length. Burst length is a threshold-based counter
that dictates how much time the system spends in the in-
strumented version collecting profile information. Bursty
tracing was originally proposed using a burst length of 1
for dynamic optimization in Java Virtual Machines [3], and
then extended to employ longer burst lengths in a binary
tracing system [15, 17].

There are three primary sources of overhead imposed by
bursty sampling. The conditional checks and counter up-
dates in the unprofiled code, i.e., the cost of deciding when
to transfer control to instrumented code, is calledbasic
overhead. Basic overhead is imposed in the software-only
implementation of bursty sampling regardless of whether
code is profiled or not. In addition, bursty sampling im-
poses indirect overhead in the form of cache, virtual mem-
ory, and pipeline pollution that results from alternating con-
trol between instrumented and uninstrumented versions of
the code.

The third source of overhead imposed by bursty sam-
pling is profiling overhead. Profiling overhead is the cost
of executing additional instructions for profile collection
and counter manipulation in the instrumented version. The



amount of profile overhead imposed by the sampling system
depends on the profile type and the frequency with which
instrumented code versions are executed. The profile type
dictates which instructions are inserted into the code and
the points at which this code is inserted. The sampling fre-
quency or rate depends both on application execution be-
havior and the accuracy requirements of the profile con-
sumer.

Our Hybrid Profiling System (HPS) implements bursty
sampling using both hardware and software to reduce these
performance overheads. Moreover HPS is flexible in that
it enables any type of profile to be collected. To enable
this, we extend and employ the Dynamic Instruction Stream
Editing (DISE) system from the University of Pennsylva-
nia [10].

3 Dynamic Instruction
Stream Editing (DISE)

DISE is a hardware mechanism that dynamically and
transparently inserts instructions into the execution stream
thereby enabling semantics similar to macro expansion in
the C programming language [10]. To implement DISE,
the DISE progenitors extend thedecodestage of a hardware
pipeline to identify interesting instructions and replacethem
with a specific stream of instructions efficiently.

DISE stores encoded instruction patterns and pre-
decoded replacement sequences in individual DISE-private
SRAMs calledthe pattern table (PT) andthe
replacement table (RT) respectively. The hard-
ware compares (in parallel) each instruction that enters the
decode stage against the entries in the PT. On a match, DISE
replaces the original instruction with an alternate streamof
instructions that commonly includes the original instruc-
tion. DISE retrieves this stream of instructions from the
RT according to an address generated by the PT.

An Instantiation Logic (IL) unit is employed
by DISE to parameterize the replacement sequence ac-
cording to specific information extracted from the original
matched instruction. DISE also supports a small number
of DISE-private hardware registers to enable efficient and
transparent execution of the replacement sequence instruc-
tions without impacting the application’s registers.

The DISE mechanism operates within the single cycle
bounds of the decode stage and imposes no overhead on
instructions that are not replaced. For instructions that are
replaced, DISE imposes a 1 cycle delay. DISE utilities
operate concurrently with and transparently to the executing
program and avoid polluting the memory hierarchy in use
by the program for instructions and data.

DISE users build utilities calledApplication Customiza-
tion Functions(ACFs). Users define ACFs by writing a set
of DISE productions each of which consists of apattern

specificationand aparameterized replacement sequence.
The pattern specification includes a binary function com-
puted from the various instruction fields. The parameterized
replacement sequence is a list of instructions with fields that
may contain either precise values or directives for dynami-
cally computing the value based on the matched instruction.
The IL unit processes the directives dynamically as it gen-
erates the replacement sequence.

The progenitors of DISE have built DISE utilities for
software fault isolation [10], dynamic debugging [10, 11],
and dynamic code decompression [9, 10]. The authors also
suggest and evaluate a preliminary utility that uses DISE for
exhaustive path profiling and code generation [8, 10].

4 Hybrid Profiling Support (HPS)

The profiling system that we propose uses a hard-
ware/software (hybrid) approach for its implementation.
Figure 1 shows the overview of our HPS design. HPS con-
sists of an extension to DISE (dark grey region in the hard-
ware (H/W) section) that enables highly efficient, condi-
tional, dynamic profile collection. HPS also defines a flex-
ible, software-based (S/W), sampling framework that in-
cludes a set of sampling productions that a profile consumer
can use to specify instructions of interest and profiling ac-
tions via DISE-based, profile productions.

Execution Pipeline

Application

Sampling 
Productions

DISE with HPS
extensions

Profile
Productions

Profiling
Parameters

Profile
Consumer

S/W

H/W

Figure 1. The Hybrid Profiling Support (HPS)
system. HPS contains a hardware compo-
nent which is an extension of the Dynamic In-
struction Stream Editor(DISE). Software level
productions control the sampling framework
and provide facilities for the profile consumer
to define their profiling productions (includ-
ing instructions of interest and actions to
be taken). HPS allows the profile consumer
to control profiling parameters such as fre-
quency, burst length, and profile toggling.

Our hybrid approach enables HPS to toggle profile col-
lection (sampling) dynamically without code duplication,



according to program behavior, and with low overhead. The
HPS software interface also provides the profile consumer
with control over profiling parameters such as frequency,
burst length, and the toggle mechanism. We describe the
implementation of these components in the following sub-
sections.

4.1 Applying DISE for Sample-Based
Profile Collection

HPS implements bursty sampling in which programs
are executed without instrumentation and then periodically
sampled inbursts[3, 17]. Unlike previous approaches to
bursty tracing, however, HPS does so without code dupli-
cation. To enable this, we define a DISE ACF (Appli-
cation Customization Function) to dynamically instrument
the executing instruction stream according to asampling
flag that is controlled by asampling counter, and a
burst counter. The sampling flag indicates whether
profiling instructions should be inserted by DISE for the
program instructions of interest.

The sampling counter dictates when to set the sampling
flag. This decrementing counter initially holds a sampling
frequency value which is the number of loop iterations (ba-
sic block back-edges) and procedure invocations that must
execute before HPS sets the sampling flag and commences
profile collection. The burst counter is the same as the sam-
pling counter except that it decrements the count when these
instructions are executedwhile the sampling flag is onand
unsets the flag when the counter expires. This implemen-
tation requires five dedicated DISE-private registers for the
sampling flag, the sampling counter, the burst counter, and
the initial sampling and burst frequencies.

To implement this sample-based, profiling scheme, we
define two pattern/replacement production pairs. The first
pattern is for procedure calls and back-edges. The replace-
ment sequence for such instructions (that are successfully
matched by DISE at runtime) is as follows. The inserted
code checks the sampling flag and if it is set, an instruction
unsets the flag. If the sampling flag is unset, an instruc-
tion decrements the sampling frequency counter and checks
this resulting value against zero. If the counter is zero, in-
structions set the sampling flag and reset the counter value
to the initial sampling frequency. The original instruction
(call or back-edge) is the final instruction in the replacement
sequence.

The second pattern/replacement production pair matches
against the instruction of interest to the profile consumer,
e.g., dynamic optimizer or program analyst. The re-
placement sequence for a matched instruction first checks
whether the sampling flag is set. If it is, it executes a series
of instructions (or alternately calls a special function) to col-
lect the appropriate profiling data. The original instruction
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Figure 2. HPS extensions to DISE. HPS moves
conditional control of instrumentation out of
the critical path and into a dedicated con-
troller.

is the final instruction in the replacement sequence.
The primary drawback of this implementation and the

use of the original DISE design for sample-based profiling
is the very large number of DISE replacements that must
be performed. The system must replace every method call
and back-edge. By doing so, sample-based profiling intro-
duces significant overhead: a single cycle for each DISE
replacement and 2-5 additional instructions (and potentially
a pipeline flush) per procedure call, back-edge, and profiled
instruction. Moreover, we must replace the profiled instruc-
tion regardless of whether the sampling flag is set – since
DISE forces us to check the sampling flag within the re-
placement sequence. To reduce this overhead, we have op-
timized and extended the DISE design.

4.2 Optimizing DISE for Efficient Sampling

Given that the majority of the actions that we perform
to enable profile sampling are simple decrements and zero
checks, we modify DISE to perform these functions in
the DISE engine as opposed to within the replacement se-
quence. We refer to this new DISE functionality ascon-
ditional control. Conditional control provides two pri-
mary benefits. First, the sampling interval boundaries
(back-edges and procedure calls) require no replacement
sequences (i.e. no overhead). Second, we only instrument
profiled instructions when the sampling flag is set – we thus,
are able to reduce the overhead of replacement to only in-
structions of interest when sampling is turned on. To enable
conditional control, we modify the DISE production speci-
fication and the DISE engine.

Figure 2 shows the DISE extensions that enable our effi-



Extended DISE Production Specifications

DISE_Production ��

Pattern � Replacement , Conditional_Control

Pattern ��
Instruction_Pattern  && Conditional

Instruction_Pattern ��

[Original DISE Pattern Specifications]

Conditional ��

( [ ! ] (overflow_N | zero_N) ) [ ( || | && ) Conditional ]

Replacement ��
null | [Original DISE Replacement Specifications]

Conditional_Control ��

(null | inc_N | dec_N | set_N(dise_reg))[ , Conditional_Control]

Figure 3. HPS pattern and replacement speci-
fication grammar (extended from the original
DISE production specification grammar).

cient implementation of HPS. Instead of requiring that pat-
tern specifications in the DISE ACF be implemented using
unconditional matches, we allowconditional pattern speci-
fication. We add a masking layer which implements condi-
tional matching based on the status flags of internal counters
(we currently consider only overflow and zero status flags).

HPS manages internal counters using micro-instructions
that are defined as part of the DISE productions. HPS stores
these microinstructions in an associative table that we have
defined called the Conditionals Table (CT). The CT is simi-
lar in structure (but smaller in size) to the pattern table (PT)
defined as part of the original DISE infrastructure. The RT
is also part of the original DISE implementation and holds
the replacement instruction sequences.

We define a set of lightweight micro-instructions to man-
age the internal counters and extend the pattern specifica-
tion language to allow for checking of the status bits. Fig-
ure 3 shows the extended DISE production specification that
enables conditional control within a DISE ACF.

We also extended the root production, called
DISE Production, and the Pattern production to implement
conditional control. We added ConditionalControl and
Conditional productions that allow the ACF writer to
specify simple conditional expressions. These expressions
check the status flags for a particular counter for overflow
and zero. The microinstructions that we defined are incN
and decN which increment and decrement DISE counter
N, respectively (where N varies between 0 and the number
of DISE-private counters). The microinstruction setN
(dise reg) sets counter N with a value retrieved from
an internal dise register. HPS can also set the Condi-
tional Control to null if no conditional microinstruction are
required.

Another DISE extension that we make for HPS is to en-

Sampling Framework Productions

# We are not profiling, check for procedure call and backward branch
# increment the sampling counter - CC1- and fail production

P1:T.OPCLASS == proc_call && !overflow_1 � null, CC1
P2:T.OPCLASS == branch && T.PC < T.Target && !overflow_1 

� null, CC1

# We are profiling, check for procedure call and backward branch, 
# increment the burst counter - CC2 - and fail production
P3:T.OPCLASS == proc_call && overflow_1 && ! overflow_2 

� null, CC2
P4:T.OPCLASS == branch && T.PC < T.Target 

&& overflow_1 && ! overflow_2 � null, CC2

# We are done profiling because burst counter status (overflow_2) 
# has overflowed. reset counters (this unsets overflow_1 and 
# overflow_2) causing sampling to stop
P5:T.OPCLASS == proc_call && overflow_1 && ! overflow_2

� null, CC3
P6:T.OPCLASS == branch && T.PC < T.Target 

&& overflow_1 && overflow_2 � null, CC3

CC1: inc_1;
CC2: inc_2;
CC3: set_1(sampleFreq); set_2(burstLength);

Figure 4. Pattern and replacement produc-
tions for the HPS sampling framework.

able specification of pattern productions without replace-
ment sequences. This change is reflected in the Replace-
ment production: null is an optional replacement sequence.
When HPS encounters a pattern production rule with a
null replacement specification, the pattern match fails upon
completion. As a result, HPS simply forwards the current
instruction through the decode stage unimpeded, while still
permitting local conditional microinstructions. This imple-
mentation (match failure upon encountering a null replace-
ment) is key to enabling low overhead in HPS since the
1-cycle penalty is imposed only when an instruction is re-
placed.

Figure 4 shows the set of productions that we use to im-
plement sample-based profiling in HPS. These productions
use conditional control and microinstructions (demarked by
CCx in the Figure) to decrement the sampling counter, to
decide when to set and unset the sample flag, and to decide
when a sampling interval has ended. Given this implemen-
tation, basic overhead is completely eliminated and no pro-
filing overhead is imposed on the executing program, either
direct or indirect, when the sampling flag is unset (i.e. sam-
pling is turned off).

HPS employs two counters: counter1 is the sampling
counter and counter2 is the burst counter. OF1 and OF2 are
the overflow status flags that HPS uses as the sampling flag
and burst flag. HPS originally sets the counters to the max-



Profile Type Productions
Hot Data Stream Analysis
P1: T.OPCLASS == mem_op && overflow_1 R1, null

R1: call(DataStream_handler)
T.INSN

Hot Call Pair Analysis
P2: T.OPCLASS == proc_call && overflow_1 R2, null

R2: call(CallPair_handler)
T.INSN

Hot Method Analysis
P3: T.OPCLASS == proc_call 

|| (T.OPCLASS ==branch && T.PC < T.Target) 
&& overflow_1 R3, null

R3: call(HotMethod_handler)
T.INSN

Figure 5. Pattern and replacement produc-
tions for the three different profile types
that we investigated using the HPS sampling
framework: hot data stream, hot call pair, and
hot method profiling.

imum value minus the sampling frequency. This ensures
that the counters overflow when the desired thresholds have
been reached. This optimization requires only two DISE-
private registers (as opposed to four in the unoptimized ver-
sion), for the initial sampling value (sampleFreq) and burst
length (burstLength). We can change these values dynami-
cally in order to adapt to the changing needs of the profiling
application.

When a procedure call (P1) or backward branch (P2) is
encountered and sampling is turned off (OF1 is unset), the
sampling counter is incremented. When a procedure call
(P3) or backward branch (P4) is encountered and sampling
is turned on (OF1 is set) while the burst length has not been
reached (OF2 is unset), the burst counter is incremented.
If either counter overflows, their OF flag will be implicitly
set. If OF2 overflows, HPS has sampled for the appropriate
burst length; P5 and P6 productions capture this. If OF1
overflows, HPS will commence sampling. The hardware
implicitly unsets OF1 and OF2 when the counters are set to
their initial values (which happens when a sampling interval
terminates).

4.3 HPS Profile Type Specification

HPS is flexible in that it can implement any instruction-
based profiling technique by specifying a DISE ACF for
each profile type of interest. We use HPS to implement
three different profile types: hot data stream, hot call pair,
and hot method. These profiles are widely used in dynamic

and adaptive optimization systems [2, 6, 7, 18]. Hot data
stream profiling is also used in an offline setting to evalu-
ate and analyze how the program accesses its data. This
analysis is important for program and data placement opti-
mizations [17].

We show the HPS productions for each of these profile
types in Figure 5. We use the same format as our previ-
ous framework productions; however, these ACFs include a
replacement sequence and execute no conditional microin-
structions.

Currently we insert a call to the profile collection routine
for each profile type. The typical size of a profile handler
is a few hundred bytes. As such, several profile types can
be implemented at once. We consider only a single pro-
file type at a time in our evaluation of HPS. The only addi-
tional change required to enable collection of multiple pro-
file types at once is to have multiple profile productions ac-
tive simultaneously while merging the pattern specifications
and replacement sequences of overlapping profiles.

5 Experimental Methodology

We employ a cycle-accurate simulation platform and
simulator parameterization identical to that used in the orig-
inal DISE studies [8, 9, 10, 11]. The platform is an exten-
sion to SimpleScalar [4] for the Alpha processor instruc-
tion set and system call definitions. Our simulation en-
vironment models a 4-way superscalar MIPS R10000-like
processor. It simulates a 12 stage pipeline with 128 en-
try reorder buffers and 80 reservation stations. Aggressive
branch and load speculation is performed and an on-chip
memory with 32KB instruction and data caches and a uni-
fied 1MB L2 cache is modeled. The DISE mechanism is
configured with 32 PT entries and 2K RT entries each oc-
cupying 8 bytes.

We model our DISE extension as straightforward coun-
ters for the sample frequency and burst length. We employ
the DISE productions that we defined in Section 4 to di-
rect the DISE engine. The actions that the system performs
to compute the increment do not use the primary execution
pipeline, and thus, do not impact simulated performance.

To generate the instructions for profile collection using
each of our three profile types, we write the code using the
C language and compile it for our target platform (Alpha
EV6). We hand-optimize the generated assembly to ensure
compactness. We also insert a no-op instruction to simulate
single cycle stalls associated with each replacement.

We generate exhaustive profiles as well as sampled pro-
files for a variety of sampling frequencies and burst lengths.
Sampling frequency is the number of events (back-edges
and procedure calls) that must execute in between sam-
pling intervals. We use the termsampling sparsity
to mean the inverse of the sampling frequency. The relation-
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bzip2 106      245     245    44.6 1,006        2,119         4,546         3,209           

crafty 165      792     792    43.4 496           620            2,542         404              

eon.cook 599      2,029  2,065 1.9 1               36              51              31                

eon.kajiya 602      2,035  2,072 9.2 50             187            251            31                

eon.rushmeier 602      2,046  2,083 2.7 2               54              72              31                

gap 487      1,779  2,672 18.8 167           223            723            17,389         

gcc 1,234   7,565  7,671 22.1 317           590            1,199         815              

gzip 113      218     218    25.5 351           775            1,531         690              

mcf 113      215     215    5.3 44             85              203            69                

parser 338      1,149  1,151 82.0 690           922            2,798         1,387           

perlbmk 719      3,138  3,338 5.1 48             79              178            2,728           

twolf 234      1,047  1,047 2.7 29             61              165            25                

vpr.place 180      627     627    13.9 1,647        437            897            35                

vpr.route 264      1,054  1,054 6.0 77           196          469           435

Figure 6. Select Benchmark statistics relevant to the profil es collected.

ship between sampling frequency, sparsity, and burst length
is expressed by the following formula:

frequency =
burstlength

(burstlength+sparsity)

For our experimental evaluation, we investigate bursts of
length 1, 10, 50 and 100. For each, we compute a sparsity
value which would allow for a sampling frequency of 1/100,
1/500, 1/1000, 1/5000 and 1/10000.

To evaluate accuracy, we compute the overlap of the
sampled profiles and the exhaustive profiles by using the
relative-contribution metric defined in [13]. We select the
top members of the profile such that their combined total
accounts for 90% of the total profile. We then compute the
contribution percentage of each member in the profile total.
Finally, we calculate the overlap of two profiles by iterating
over all members of the profiles. For each member, we add
the minimum of its contribution percentage to both profiles.
The result is an accuracy value between 0% and 100%.

We evaluate the performance and profile quality of our
system using the benchmarks of the SPECINT2000. We
compile the benchmarks for the Alpha EV6 platform us-
ing GCC 3.2.2 with the -O4 optimization flag. We re-
port results for complete runs on the test inputs. For hot
call pair and hot method profiles we used all 15 bench-
marks from SPECINT2000. For hot data stream analysis
we measure the performance for all 15 benchmarks, but
we compute the profile quality for only 6 of the bench-
marks (eon.cook/kajiya/rushmeier, twolf, perlbmk), due to
the large amount of memory required (and thus time) to an-
alyze the other benchmark data.

Figure 6 shows some of the dynamic behavior metrics
of the studied benchmarks.Method countis the number
of unique methods in the benchmark whileCall sitesis the
number of static call operations.Call Pairs is the number
of unique call site and target address pairing observed in
the dynamic execution of the benchmark. The extra num-
ber of call pairs beyond the number of call sites indicate

a number of indirect jumps.Call count is the number of
dynamic calls made during the benchmark’s execution.Dy-
namic Branch CountandDynamic Memory Referencesare
the number of respective instruction executed whileDy-
namic Instructionsis the total number of dynamic instruc-
tions executed.Unique Addressesis the number of distinct
memory addresses accessed by a benchmark. The first two
metrics are relevent to hot method profiling, while the first
5 are relevant to hot call pair profiling. The sixth and eighth
are relevant to hot data stream profiling and the fourth and
fifth metrics are relevant to the determination of when to
sample (i.e. the sampling interval boundaries).

6 Evaluation

In this section, we present the performance results from
our experimental evaluation of HPS and HPS-based sam-
pling. As described previously, HPS imposes no basic over-
head – the cost of deciding when to profile. In software sam-
pling systems that transfer control between instrumented
and uninstrumented code according to program behavior,
e.g., [3] and [17], counters must be maintained in unin-
strumented code to decide when to jump into instrumented
code. Basic overhead accounts for 1-10% of execution time
in a Java virtual machine sampling system [3] and 6-35%
in a binary instrumentation system (3-18% using overhead
reduction techniques that reduce the number of dynamic
checks) [17]. HPS implements the same functionality as
these prior systems using a hybrid hardware/software ap-
proach that eliminates the basic overhead and the need for
code duplication.
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(c) Hot Data Stream Profiling
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(a) Hot Call-Pair Profiling
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(b) Hot Method Profiling

Figure 7. DISE vs HPS: The graphs breakdown the overheads exh ibited by a direct DISE implementa-
tion of the sampling framework for the profiles studied. The o verhead is measured against unprofiled
executions of the benchmarks. The Instrumentation checks ( top bar) are the compulsory instrumen-
tation performed at every single instruction of interest (p rofile specific) to check weather its time
to take a sample. Basic overhead (second bar from top) is the w ork done to determine the time to
sample. Sampling overhead (second bar from bottom) is the ag gregrate of profiling work performed
to collect the data. Our extensions to DISE (HPS) eliminates all but the sampling overhead.
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Figure 8. Accuracy vs Overhead for hot data stream (left), ho t call pair (middle), and hot method
(right) profiling.

6.1 Profiling Overhead With and Without HPS
Extensions

First we evaluate the performance impact of our DISE
extensions which enables conditional control within the
DISE engine. Figure 7 shows the overhead of sample-based
hot data stream (top graph), hot call pair (middle graph),
and hot method (bottom graph) profiling using DISEwith-
out conditional controls. Each bar is the execution time for
each program normalized to execution without DISE and
without profiling (bottom-most section of the bars). The
second section from the bottom of the bar is the overhead of
profiling the code using a sampling frequency of 1/100 and
a burst length of 1 (burst length is 100 for the Data Stream
results). The third section from the bottom of the bar is the
basic overhead. The top section of the bar is the overhead
for instrumentation checks.

Instrumentation checks are conditional instructions that
check whether the sampling flag is set and, if so, invokes
the profile handling routine. This instrumentation is applied
to each instruction in which the profile being gathered is in-
terested (e.g. procedure calls for hot call pair, and memory
accesses for hot data stream profiling). The instrumentation
checks are dominant in the hot data stream profiler since the
frequency of memory operation is much higher (approxi-
mately 1 in 2 to 5 of all dynamic instructions), whereas pro-
cedure calls are much less frequent (approximately 1 in 25
to 100). HPS eliminates this overhead by performing these
checks off the execution path as part of the DISE engine.

The only source of runtime overhead introduced by HPS
is the sampling overhead (second section from the bottom
of the bar). Software only sampling techniques will only ex-
hibit basic and sampling overhead – however the overhead
is larger due to the indirect impact of code duplication. HPS
reduces the average overhead of DISE instrumentation for
the programs and sampling parameterizations that we stud-
ied by 106% for hot data stream profiling and by 16% for

hot call pair and hot method profiling.

6.2 Overhead and Accuracy of HPS

We next evaluate the overhead and accuracy of HPS.
Since the basic overhead of HPS is zero, the total perfor-
mance overhead is proportional to the sampling frequency
with a constant of proportionality equivalent to the cost of
the inserted profiling code. The variance of performance
between benchmarks corresponds to the dynamic density of
profiled events within a sampling interval as well as the fre-
quency of sampling intervals.

The graphs in Figure 8 show the relationship between
overhead and accuracy for hot data stream (left graph), hot
call pair (middle graph), and hot method (right graph) pro-
filing. We employed a burst length of 100 for hot data
stream profiling and a burst length of 1 for hot call pair and
hot method profiling. We discuss the impact of burst length
in the next section. This data is the average across all of our
benchmarks. Figure 9 shows the equivalent results for indi-
vidual benchmarks. We observe that most benchmarks have
similar overhead graphs with varying offsets corresponding
to the variance in the density of profiling events and number
of sampling intervals.

The performance characteristics of sample-based hot
data stream profiling are very different from hot method and
call pair profiling. Such profiling is inaccurate and imposes
higher overhead even when implemented in hardware. Our
accuracy results are similar to those from recent studies that
use software sampling for hot data stream profiling [6, 17].

The most promising aspect of our results is the range
of total overhead for hot method and hot call pair profil-
ing. Our benchmarks exhibit an overhead range from 0% to
2.5% with an average of just over 1% for the most aggres-
sive sampling rate (1/100) and about 0.2% for high quality
(90% accurate) profiles. These overheads are very similar
to hardware-based approaches to profile collection such as
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Figure 9. The Accuracy and overhead for the profiles of indivi dual benchmarks collected using HPS
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Figure 10. The graphs show the profile accuracy using variabl e burst lengths for hot data stream(DS)
(left), hot call pair(CP)(middle), and hot method(HM)(rig ht) profiling. The top row is the average
accuracy across all studied benchmarks. While the bottom 3 r ows show the accuracy for 3 selected
representative benchmarks.



those that use hardware performance monitors. However,
HPS enables flexible programming, collection, and param-
eterization of a wide range of application-specific profile
types.

6.3 Impact of Burst Length

The authors in [17], argue that increasing the time spent
in instrumentedcode during every sampling instance [17]
improves profile accuracy at lower sampling rates. The au-
thors investigate the use of longer burst lengths for hot data
stream sampling.

The graphs in Figure 10 show the profile accuracy across
benchmarks for different burst lengths (bars), sampling fre-
quencies (x-axis), and profile types. The left clolumn
graphs are for hot data stream, the middle graphs are for hot
call pair, and the right graphs are for hot method sampling.
The top row show the averaged data across all tested bench-
marks, while the other 3 rows shows the same data for 3
representative benchmarks. The y-axis is the overlap accu-
racy; the maximum accuracy is 50% for the left graphs and
100% for the middle and right graphs. On average, hot data
stream sampling performs significantly better using longer
burst lengths as was found in the prior work. However, for
hot call pair and hot method profiling, shorter bursts (i.e. a
burst length of 1) performs significantly better.

The explanation for the improved accuracy of hot data
stream sampling is straightforward. Since we are looking
for consecutive streams of memory accesses, the longer
consecutive sampling intervals we spend profiling, the
longer the consecutive stream we are likely to observe and
the higher our profile accuracy.

The explanation for the deteriorating performance by the
other profiles is less apparent. We believe that this behavior
is due to the sampling patterns exhibited by longer sam-
pling bursts. With longer bursts, the profiler jumps to in-
strumented code less frequently but spends more time there
every time it jumps. For benchmarks with high densities of
sampling intervals, and many inner loops, this may result
in a disproportionate amount of time spent profiling similar
events, and thus skewing the data toward these events and
missing other hot events because of the smaller sampling
frequency.

Our conclusion is that for the majority of profiles, small
sample bursts are likely to produce improved profile quality,
unless there is an intrinsic property in the profile which will
benefit from longer bursts. HPS implements per-profile-
type burst length (as well as sampling frequency) as a pa-
rameter to the system that a user can set appropriately.

7 Conclusions and Future Work

The need to profile executing programs is becoming in-
creasingly more important as software and hardware in-
crease in complexity.Hybrid Profiling Support (HPS) is
an efficient, flexible and accurate sample-based profiling
framework. HPS adds conditional controls to the DISE sys-
tem, a hardware approach for macro-expansion of dynam-
ically executing instructions, and uses it to define a frame-
work for the rapid implementation and deployment of pro-
filing applications. Our empirical evaluations on 3 differ-
ent types of profiles demonstrate the very low overhead and
high accuracy of HPS.

Our future work includes the implementation and eval-
uation of different classes of profiling applications such as
adaptive bug isolation [20], using HPS. We plan to inves-
tigate the use of HPS for concurrent collection of different
profile types and to evaluate the effect of different param-
eters and configurations of HPS on dynamic optimization.
We also plan to investigate the effect of incorporating phase
aware profiling [22] on the performance and effectiveness
of HPS.
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