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Time series-based prediction methods have a wide range of uses in embedded systems. Many

OS algorithms and applications require accurate prediction of demand and supply of resources.

However, configuring prediction algorithms is not easy, since the dynamics of the underlying data

requires continuous observation of the prediction error and dynamic adaptation of the parameters

to achieve high accuracy. Current prediction methods are either too costly to implement on resource-

constrained devices or their parameterization is static, making them inappropriate and inaccurate

for a wide range of datasets. This paper presents NWSLite, a prediction utility that addresses these

shortcomings on resource-restricted platforms.
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1. INTRODUCTION

The lifetime of batteries is a critical factor in the design of mobile, resource-
constrained devices. Current battery technology however, is unable to increase
capacity, significantly without increasing size and weight. This trend is unac-
ceptable given the increasing demand by consumers for smaller, lighter devices.
Instead, software techniques are needed that reduce energy consumption and
increase battery life.
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Key to the efficacy of such techniques is the low cost of their use and accurate
prediction of future application, workload, and resource behavior. Techniques
that optimize energy use must estimate how the device will be used (demand)
and what resources will be available to it (supply) in the future, to determine
which optimization to apply and when. If the estimates are incorrect (inaccu-
rate) or the application of the optimization introduces significant overhead, the
techniques may be unable to extend battery life or actually shorten it.

One popular and important energy optimization technique is remote execu-
tion (aka computational offloading) [Flinn et al. 2001; Rudenko et al. 1998, 1999;
Kremer et al. 2001; Li et al. 2001]. Remote execution extends the computational
power and battery life mobile devices by off-loading parts of the execution from
a battery-powered devices to a wall-powered, more capable, system. Remote
execution has the potential to significantly increase the utility of devices by
enabling execution of a wide-range of resource-intensive applications, e.g., aug-
mented reality, natural language translation, feature recognition, collaborative
computing, in a mobile environment.

Remote execution requires accurate prediction and low overhead computa-
tion of the estimations. A remote execution system must predict the cost of
performing local and remote execution to determine when off-loading a compu-
tation will require less energy than performing it locally.

To predict the required parameters (i.e., network bandwidth, latency,
local, and remote CPU supply), extant systems employ statistical tech-
niques [Rudenko et al. 1999; Flinn et al. 2001; Flinn and Satyanarayanan 1999;
Balan et al. 2003]. These prediction algorithms are parameterized and stati-
cally hand-tuned for a specific dataset, decreasing the effectiveness of predictors
when the characteristics of input data changes. Moreover, these techniques are
computationally intensive and require floating-point calculations, which can
consume significant battery power. Since these computations are performed
by the optimization system on the device, their cost must be low enough to be
amortized by the optimized execution. Unfortunately, extant approaches to pre-
dicting resource supply and demand do not consider the cost of the estimation
technique itself.

In this paper, we present a novel alternative to resource prediction for mo-
bile, resource-constrained devices, called NWSLite. NWSLite is a low-cost, yet,
highly accurate prediction service that is an extension of the network weather
service (NWS), a resource performance measurement and prediction toolkit
originally developed for scheduling high-performance, scientific applications in
computational Grid [Foster and Kesselman 1998] environments [Swany and
Wolski 2002; Wolski et al. 1999; Berman et al. 1996; Sucu and Krintz 2003;
Spring and Wolski 1998]. NWSLite is a modification to the NWS forecasting
model in a way that reduces its resource consumption footprint to enable its
use in a mobile setting.

NWSLite can be incorporated by users into any mobile framework that uses
prediction. It makes nonparametric, light-weight, forecasts of any resource for
which measurement values can be supplied. As such, we can use it for prediction
of CPU load, memory availability, and network bandwidth and latency, as well
as file I/O and execution time of an application’s operations (tasks).
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In this study, we empirically compare both the accuracy and cost of NWSLite
to the original NWS and extant prediction algorithms. We analyze these per-

Q1

formance characteristics for a wide range of applications and resources: appli-
cation execution time, availability, wired-network bandwidth and latency, and
wireless bandwidth. Our results show that NWSLite enables prediction accu-
racy that in many cases significantly exceeds that of the predictors to which we
compare. In addition, it consumes significantly fewer computational resources
than its predecessor and enables more effective remote execution that was pre-
viously possible.

In the following sections, we describe the use of resource performance predic-
tion to facilitate remote execution. We then describe the prediction methodolo-
gies to which we compare our work. Next, we detail the design and implementa-
tion of NWSLite in Section 3 and present an empirical evaluation of its efficacy
both in terms of prediction accuracy and resource consumption (Section 4). In
Sections 5 and 6, we discuss our remote execution scenarios that use NWSLite. Q2
Finally, we conclude in Section 7.

2. EXTANT PREDICTION ALGORITHMS USED IN EMBEDDED SYSTEMS

Prediction of resource availability and performance is a widely studied field
of research. In this section, we overview representatives of common resource
prediction methods that are employed for various uses by embedded devices. We
focus on techniques that are online, require no modification to the application,
and that are executed on the device itself, for which the overhead of the approach
is as important as the accuracy it achieves. We describe each prediction strategy
in the context of the particular resources (CPU, network bandwidth, etc.) for
which they are used.

2.1 CPU Availability

Systems employ CPU availability prediction to estimate the CPU time a process
or subprocess task consumes [Flinn et al. 2001; Grunwald et al. 2000]. These
predictions are used by the execution environment to guide task scheduling
and processor scaling decisions [Weiser et al. 1994; Govil et al. 1995; Pering
et al. 1998; Kremer et al. 2001; Flinn et al. 2001; Grunwald et al. 2000]. A
common technique for estimating CPU load is one that gathers load statistics
via various operating system utilities and interfaces, such as vmstat and top
in UNIX. CPU estimation techniques range from very simple to complex and
thus vary in agility, overhead, and accuracy. Agility is the degree to which a
prediction utility can react to and adjust for variance in measured, history data.

PAST scheduling [Weiser et al. 1994] assumes that the CPU load in the
next interval will be the same as the most recent CPU load measurement. This
forecaster is very agile since it immediately responds to changes in CPU load.
However, such a response can have a negative effect on accuracy when recent
CPU spikes are outliers (noise) and short-lived, i.e., not good estimates of future
behavior.

To overcome such limitations, other CPU prediction techniques filter out
noise using more sophisticated techniques. The Odyssey prediction system
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represents such systems. Odyssey estimates CPU availability by first assum-
ing that CPU cycles are evenly distributed among all processes. It then uses
an exponential decay technique (i.e., a smoothing filter) to filter out noise. The
Odyssey CPU prediction model is:

Scpu = P
N + 1

(1)

where P is the processor clock speed, N is the number of runnable processes,
and Scpu is the available CPU cycles. Odyssey uses a smoothing filter to estimate
the number of processes in the next interval:

Nt+1 = αNt + (1 − α)n(p) (2)

In this equation, n is a function of observed number of processes in the current
interval and defined as:

n(i) =
{

nr −1 If p is runnable

nr Otherwise

}

where nr is the number of runnable processes at time t.
The AVGn policy [Weiser et al. 1994] is another popular CPU prediction tech-Q3

nique that directly decays the measured CPU load over the last k intervals.
Since this policy is simply an extension to PAST policy, it inherits the same
weaknesses (i.e., static, parameterized). AVGn policy is less agile than PAST,Q4
but it is more resilient to noise in the network. There are also several other CPU
load prediction techniques that are based on observation heuristics [Govil et al.
1995]. Such techniques, however, are less general, since they have many pa-
rameterized heuristic rules designed to optimize performance on the particular
workload that they are intended for.

A more recent study [Sinha and Chandrakasan 2001] indicates that a single,
parameterized method may not be the best choice across different workloads.
In their study, Sinha et al. compared four CPU load-prediction techniques, in-
cluding exponential smoothing, moving averaging, least mean squaring, and a
purely probabilistic technique called expected workload state, using three real
workloads. Their results showed that least mean squaring was better than the
others, on average. However, the best predictor varied from one workload to
another [Sinha 2001].

2.2 Network Latency and Bandwidth

Many embedded systems employ prediction techniques for network latency
and bandwidth. Two common uses of such techniques are task scheduling for
distributed devices and computation offloading. Computation offloading is a
technique in which the system executes processes or tasks on more capable or
wall-powered computer systems to conserve the battery power or extend the ca-
pability of mobile, resource-constrained devices [Flinn et al. 2002; Noble et al.
1997; Kim and Noble 2001; Balan et al. 2003].

To estimate network latency, extant prediction systems use passive obser-
vations of RPC packets to compute the round-trip time and throughput of
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network [Noble et al. 1997]. Since, network performance is highly variable,
noise can severely degrade the accuracy of network bandwidth estimations. To
improve accuracy, other prediction systems use an exponential smoothing filter
much like that used above for CPU [Noble et al. 1997]:

new = γ (measured) + (1 − γ ) old (3)

The value of the exponential decay factor (γ ) determines the agility of the
method. A larger value increases the responsiveness, but decreases the tech-
nique’s ability to filter out noise. Thus, the accuracy of the method is highly
dependent on the choice of the parameter. Since network latency and band-
width exhibit different performance characteristics, users must identify multi-
ple parameterizations (γ ) for the filter function of each. Moreover, for a single
metric (latency or bandwidth), the filter requires different parameterizations
for different network technologies to achieve the best accuracy.

To overcome the limitations of a large number of parameterizations and in-
stability, researchers have developed a network performance estimator that
implements two exponential smoothing functions in a single forecasting sys-
tem [Kim and Noble 2001], a so-called flip-flop predictor. The parameters used
by this predictor are commonly at opposite ends of the spectrum to capture the
benefits of both agility and smoothing. Both predictors execute concurrently.
However, the estimator uses the one with the larger parameter (that enables
more smoothing) as long as the approximate standard deviation of the pre-
dicted value is in a predetermined range with respect to the smoothed mean.
The estimator switches to the agile version otherwise. This design has an im-
portant advantage over previous models as it is more accurate and can adapt
more effectively to dynamic changes in the system.

2.3 Power Consumption

Power consumption is another important resource in mobile, embedded device.
As such, its measurement as well as the prediction of remaining battery life has
been the focus of much research [Kremer et al. 2001; Li et al. 2001; Rudenko
et al. 1999; Krintz et al. 2004]. Many studies depend on parameterized, static
performance models to estimate power consumption [Kremer et al. 2001; Li
et al. 2001].

Our focus is on online techniques for power estimation. One such represen-
tative system is the remote processing framework (RPF) [Rudenko et al. 1999].
RPF predicts task power consumption online to determine whether the task
should be executed locally on the device or remotely on a wall-powered server,
i.e., whether computational offloading should be performed. RPF collects his-
tory data on the power consumption of previous tasks using a battery monitor
on the device and uses it to predict the power consumption of future tasks. To
estimate task power consumption, RPF uses this smoothing filter:

fn+1 = (1 − α) ∗
∑n

i=n−k vi

k
+ α ∗ fn (4)

where fi is the forecasted value, vi is the measured value, and i is the mea-
surement index. α and k determine how conservative the forecaster is: A
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small k combined with a large α will result in higher responsiveness to recent
changes.

Note that the RPF smoothing filter (Equation 4) is the same as the equa-
tion for CPU prediction prediction (Equation 2) when k = 1. In addition, the
smoothing filter is the same as the bandwidth and latency prediction function
in Odyssey (Equation 3), when k = 1 and α = 1 − γ .

2.4 Application CPU Demand

The CPU demand of an application is highly dependent on the nature of the
application itself. However, when no application-specific information is avail-
able or its collection is infeasible, prediction systems can estimate CPU demand
using application history logs. The prediction system described in Narayanan
and Satyanarayanan [2003] employs such a methodology. This methodology
is popular and likely to be successful for embedded devices, since it does not
require any effort by the user or application programmer, access to program
source code, or no modification to the program.

In such systems, an online, learning, predictor maintains program-specific
coefficients that are used to model the CPU demand of the application for a
particular input dataset. Computing the initial values of coefficients unfortu-
nately requires off-line training. However, once the initial values are set, the
system updates the coefficients using recursive least-squares regression with
exponential decay (LSQ). Given the characteristics of exponential decay, more
weight is given to the recent observations.

LSQ can efficiently predict the value y when it is dependent on a set of
parameters x, such that y = Ax + w, and w is the measurement error or noise.
The general formula for recursive LSQ to estimate CPU load of tasks is:

Ak = Ak−1 − Pk
{
xkxT

k Ak−1 − xk yk
}

Pk = {
Pk−1 − Pk−1xk

[
α + xT

k Pk−1xk
]−1xT

k Pk−1

}
/α

where α is the decay factor and yk is the measurement at time k. In the equation
above, yk+1 is predicted by Ak+1xk . The Pk matrix is commonly referred to as
the history or filtering factor [Young 1984].

This technique performs well for augmented reality applications – a popu-
lar application domain for mobile devices. Such programs render pictures as a
camera scans a set of scenes. Since scenes commonly overlap, their transitions
are smooth. That is, the resource consumption behavior for the generation of
a scene is similar to that of a neighboring scene. As a result, the performance
data varies smoothly from scene to scene, enabling a prediction system that
uses exponential smoothing to produce accurate predictions of CPU demand.
As mentioned previously, a limitation of recursive least-mean squaring is that
numerical computation errors can accumulate after each recursion-causing al-
gorithm to become unstable and diverge [Bottomley and Alexander 1991].

3. NWSLITE

All extant prediction methodologies require user-specified parameterizations
to forecast the cost of various resources. Users must identify the appropriate
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parameters through empirical evaluation or using a complex, off-line learning
process. Unfortunately, the parameters are specific not only to the executing
application, but also to individual tasks within an application. As a result,
the parameterization may not work well across applications or even across
the tasks of a single application. There are also methods that mitigate this
problem by requiring more user or application feedback [Flinn 2001]. Moreover,
existing systems use a number of different prediction strategies (each requiring
training and parameterization) for different resource types (e.g., CPU, network
performance, and power consumption).

Our approach to the problem of resource prediction employs a different
methodology. Specifically, it is one that is nonparametric, automatic, adap-
tive, and agnostic of resource type and application behavior. That is, we em-
ploy a single system that makes accurate predictions of any resource type for
any application—without requiring application modification or participation
by users for parameterization and off-line training. Moreover, our system is ap-
propriate for resource-constrained, mobile, systems, i.e., it consumes few device
resources to make accurate predictions. The system is called NWSLite.

NWSLite is an extension of the network weather service (NWS) [Wolski
1998], a freely available toolkit [NWS], originally developed for the compu-
tational grid [Foster and Kesselman 1998; Berman et al. 2003]. The compu-
tational grid is a computing paradigm for the development of software sys-
tems that enables dynamic acquisition of resources from a heterogeneous and
nondedicated resource pool. Grid systems are high-performance, large-scale,
distributed systems that require applications to adapt to the dynamically
changing systems on which they are executed, as well as to highly variable
resource performance. To extract performance from these systems, application
schedulers must use predictions of future resource behavior to determine how
the application can best use the available resources.

The NWS operates a distributed set of performance sensors, from which it
periodically, and unobtrusively, collects performance measurements. The sen-
sors apply a set of statistical forecasting techniques to individual performance
histories and generate forecast reports for the resources being monitored. The
NWS disseminates these reports via a number of different APIs in near real-
time [Wolski et al. 1999]. Currently, the NWS provides sensors for end-to-end
TCP/IP bandwidth and latency, available CPU and memory, battery power,
and disk storage, and is used in a large number of different grid technologies.

NWS prediction uses a mixture-of-experts approach to prediction, instead
of relying on a single model. It implements a large set of models, each having
its own parameterization. Given a performance history of observed measure-
ment values, it generates a forecast for each measurement. NWS ranks each
predictor by computing the prediction errors (the difference between measured
and forecasted values). Each time a forecast is requested, NWS recalculates
the ranking across all predictors using the most recent history and chooses the
most accurate model. The ranking of the predictors are done using the mean
squares of the prediction errors. However, NWS allows the user to use other
metrics (i.e., mean absolute percentage error). The implementation of NWS
that we extended uses the 24 prediction models, shown, in Table I.
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Table I. NWS Forecasters and the Approximate Costs of Eacha

Name Average cost

1 Last Value 0

2 Running Mean 3

3 5% Exp Smooth 3

4 10% Exp Smooth 3

5 15% Exp Smooth 3

6 20% Exp Smooth 3

7 30% Exp Smooth 3

8 40% Exp Smooth 3

9 50% Exp Smooth 3

10 75% Exp Smooth 3

11 90% Exp Smooth 3

12 5% Exp Smooth, with 0.1% trend 10

13 10% Exp Smooth, with 0.1% trend 10

14 15% Exp Smooth, with 0.1% trend 10

15 20% Exp Smooth, with 0.1% trend 10

16 30% Exp Smooth, with 0.1% trend 10

17 Median Window 31 88

18 Median Window 5 16

19 Sliding Median Window 31 124

20 Sliding Median Window 5 26

21 30% Trimmed Median Window 31 106

22 30% Trimmed Median Window 51 169

23 Adaptive Median Window 5-21 171

24 Adaptive Median Window 21-51 455

aWe show cost in column three as the number of floating-point operations

performed.

This mixture-of-experts method achieves its accuracy by employing a wide
range of statistical models, each of which may be most appropriate at a given
time, for a given resource. Last value simply uses the last measurement as a
prediction of the next measurement. Consequently, last value is very respon-
sive to sudden changes. Unfortunately, last value is very susceptible to noise
in measurements. Running mean keeps a running tabulation of the average
measurement and uses that as a prediction at each time step. Exponential
smoothing predictors use different parameterizations of Equation (3). Median
predictors exercise a median filter over the data series. Some of these filters are
enhanced using a sliding window, and α-trimming, which is obtained by sorting
the values and removing a fraction from the high and low ends. By tracking the
prediction error of each predictor, NWS identifies the most appropriate predic-
tor at runtime and dynamically switches to that predictor.

Figure 1 gives the pseudocode for NWS forecaster selection. Given a history
of measurement values (a trace), a forecast is generated for each, using each
forecaster, over all the trace, up to the current value. In addition, NWS uses
different windows (configured at compile time) of previous data and records
the winning predictor for each. The winner predictor is the one that has the
least prediction error across all window sizes. For example, if an exponential
smoothing predictor is the most accurate predictor at one point in time and
conditions change so that another predictor becomes the most accurate, the
system will choose the latter predictor as winner, only if the change is persistent
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for each window size (including the entire history)
for each forecaster implemented in NWS

forecast over current window size using
current forecaster

record aggregate prediction error for
current forecaster

end for
record forecaster with lowest aggregate error

for this window size
end for

choose forecaster and window size with lowest
aggregated error and make final forecast using it

Fig. 1. Pseudocode for NWS forecast selection.

enough to cause the aggregated error of the latter to be smaller than the former
one. A detailed discussion of NWS forecaster selection is given in [Wolski 1999,
2003; Wolski et al. 1999].

The mixture-of-experts method that NWS employs also has other important
advantages. First, even though the individual NWS models may be parametric,
the overall system is not. The only input to the system is the measurement
history, i.e., the NWS is agnostic of the resource to which the measurement
belongs. Second, NWS can easily adjust itself to changes in the characteristics
of the data series by switching to another model. Third, it can be used on any
type of data for which measurements can be made. There is no distinction
between CPU availability and network bandwidth, for example.

To illustrate how NWS can better adapt than parametric models, we are
going to use an example, in which, we use CPU demand measurements that
we collected on a Pentium III laptop, while a user was navigating in a 3D scene
using a rendering application. As the user navigates, each change in viewpoint
(a trace step) triggers a rendering task whose CPU demand is strictly dependent
on the number of polygons that are visible from the user’s viewpoint. Since
the viewpoint has to follow a certain track, the future CPU demand is mostly
predictable as a function of previous demand [Narayanan and Satyanarayanan
2003]. In our example, we use castle as 3D scene, and radiosity as application.
We describe both the scene and application fully in Section 4.1.

Figure 2 shows the CPU demand measurements of castle. The CPU demand
measurements indicate a significant amount of variation in task execution time
(5 to 50 ms). There is a strong pattern in CPU demand. For example, from trace
step 200–600, the CPU demand decreases regularly and then, after a few steep
changes, it stays flat for most of the next 400 steps. We exercise NWS and its
individual models on this trace.

Figure 3 compares the error performance of NWS to the individual forecast-
ing models that NWS integrates. The horizontal axis shows the square root of
mean squared prediction error. The first error bar shows the error rate if we
had an oracle to choose the best of the 24 NWS forecasters before each predic-
tion. The next bar shows the error rate of NWS, which dynamically chooses the
forecaster depending on past error rate. The remaining 24 error bars show the
error rate of each individual model. The NWS slightly exceeds (typically, it is
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Fig. 2. Measured task execution times as user navigates in castle (a 3D scene).
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NWS
Optimum

14036

Fig. 3. NWS performance in Castle. Figure compares the square root of mean squared prediction

error of each forecaster to NWS and the optimum case.

much better) the performance level of its best forecaster. While it is always pos-
sible to manually construct a data series for which NWS performs worse than
the individual models, we do not observe such a case in any of the empirical
data series that we evaluate.

Because the NWS was originally designed to support high-performance ap-
plications in wired settings, its designers put a premium on speed and extensi-
bility. As such, it consumes significant resources to perform a single prediction,
since many models are evaluated at once. The average cost column of Table I
shows the number of floating-point instructions executed for each predictor (all
are computed for each forecast made), on average. To enable its use in resource-
restricted environments, we have significantly reduced this consumption
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without sacrificing appreciable accuracy. To this end, we first evaluate the cost
of NWS prediction in terms of dynamic floating-point instructions.

Given a history of measurements and their predicted values, we define pre-
diction error using the square of the errors:

E =
n∑

i=1

( fi − vi)
2 (5)

where fi is the output of the predictor, vi is the measurement, and n is the
length of history.

Since the NWS uses a mixture-of-experts approach, all forecasters are in-
voked logically in parallel and a single winner is selected and used for the
next estimation. We use zero-one integer variables si, j to denote the winning
forecaster:

si, j =
⎧⎨
⎩

1 If model j is used to predict
measurement i

0 Otherwise

⎫⎬
⎭

Specifically, if si, j is 1, the ith forecast is made using predictor j . If si, j is 0, the
predictor is not the winner for the ith forecast. If we set k to be the number of
models in NWS, using Equation ( 5), we can formulate prediction error of NWS
as:

E =
n∑

i=1

k∑
j=1

( fi − vi)
2si, j (6)

Similarly, we can compute the cost of using the winning forecasters (in terms
of floating-point instructions, c) as:

C =
n∑

i=1

k∑
j=1

c j si, j (7)

Theoretically, it is possible to optimize NWS by running it with a different
combination of internal models on a set of representative data and then remov-
ing the least efficient ones. However, the search space is prohibitive: There are
a total of 224 combinations. To reduce the search space, we use a heuristic that
evaluates how much the total computation cost and error would change if we
substitute a forecaster u with another forecaster v throughout the series.

Formally, we express this process as:

s′
i, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 If model j is winner forecaster
for measurement i and j �= u

1 if model j is not winner forecaster
for measurement i and j = v

0 Otherwise

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where we define Eu,v and Cu,v as Equations (6) and (7) using s′
i, j instead of si, j

We employ real measurement data (i.e., performance traces) to empirically
evaluate the overhead and accuracy of each NWS predictor from various embed-
ded system resources: CPU load, wireless and wired network bandwidth and
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Fig. 4. Error and cost matrix for a real input. The matrices show the change in error and cost in

percentages when forecaster v (in rows) is substituted with forecaster u (in columns). For example,

in this particular dataset, substituting forecaster 2 (running mean) instead of 22 (30% trimmed

median window 51) increases error only 0.1%, with a 6% decrease in cost.

latency, and task CPU demand. Our dataset includes more than 300 traces. We
use six of these traces (randomly chosen among CPU load, network bandwidth,
and network latency traces) to identify NWS forecasters that enable high ac-
curacy at low cost. We use the rest of the dataset (i.e., not including these six)
to evaluate NWSLite. We provide a complete discussion of our data traces in
Section 4.1.

We compute Eu,v and Cu,v for every pair of u and v using these six traces and
record the results in a matrix with u as the rows and v as the columns. This
representation provides a very compact form with which we can evaluate the
efficiency of each model: Every column of the matrix shows how much the error
rate changes if we use v instead of u. For example, E2,1 shows the new error if
we use last value instead of running mean. If the E2,1 is smaller than original
NWS’s error rate for all the trace files, then we consider last value to be a better
predictor than running mean. Similarly, if in an extreme case, all the values of
column 2 are smaller than original NWS’s error rate, then the running mean
outperforms the original NWS. Even though this is theoretically possible, we
did not come across an example of such a case.

In Figure 4, we show the error and cost matrices for an example dataset. The
numbers to the leftmost and topmost of the matrices show the enumeration of
forecasters (given in Table I). The numbers in the matrices show the change in
error and cost in percentages when we substitute a forecaster u (in rows) with
a forecaster v (in columns). For example, when we substitute 30% trimmed
median window 31 (number 22-shaded row) with running mean (number 2-
shaded column), the error increases by 0.1% and the cost decreases by 6%.

The error and the cost matrices indicate how efficient individual NWS models
are. We use these matrices to derive the rules with which we eliminate the
models that are least efficient, i.e., the models that are never or rarely used
(winners), and the models that are too expensive to justify the extra accuracy
that they provide.
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Since the last eight models of NWS (forecasters 17–24) are significantly more
expensive than the remaining, we first concentrate our efforts on this group.
These models use different parameterizations of sliding windows over previous
measurements to provide a forecast based on the median of these measure-
ments. Depending on the sliding window size and the model adaptiveness, these
models may use up to a couple of hundred floating-point operations for each pre-
diction, which is a magnitude of order more than the other NWS models.

Fortunately, our profiles indicate that seven of the eight forecasters in this
group can be substituted by other forecasters with little loss in accuracy. As an
example, substituting these forecasters with running mean and conservative
exponential smoothing forecasters (i.e., gain factor ≤ 20%) increase the error
rate by up to 0.7%. The fairly low increase in error rate indicates that these
models are either rarely winners or their predictions are not significantly dif-
ferent from the predictions of these predictors that we substitute them with.
The only exception to this rule is sliding median window 31.

Substituting sliding median window 31 with any other single forecaster, in-
cluding the running mean, increases the error rate by at least 5.6%. While such
an increase is large, we have experienced that a hybrid solution of multiple
(and less expensive) predictors are more resilient and thus justifies removing
this expensive predictor. In this particular case, for example, when we subsitute
the aforementioned model with median window 5, the error increases by only
1.1% in one trace while it increases as much as 43.5% in another one. However,
when we consider that sliding median window can be substituted by any of the
median window 5, running mean and exponential window models; for each pro-
filed trace, we find that there is at least one forecaster that, when substituted,
can achieve an increase in error rate that is 5% or less. Thus, we remove this
forecaster from our set.

We conclude that the forecasters 8 to 11 are rarely used in the profiled traces,
because the increase in error rate is zero for any of the 23 other forecast-
ers that we substitute them with. We find only one trace that these models
are used extensively, and in this case, substituting them with less agile expo-
nential smoothing predictors (i.e., the predictors 3–6) increases the error only
marginally, by 0.5%. We also find that the forecasters 12–15 are rarely winners
and thus substituting them with others do not significantly increase the error
rate.

Fortunately, we find that the most heavily used predictors are the first eight,
which are also the cheapest in terms of computational cost. Here, we find that
last value and running mean are used extensively and cannot be substituted
with others without a significant increase in error rate. While last value is
an extremely responsive forecaster, running mean is highly conservative and
more resilient to noise. Thus, these two forecasters complement each other well.
However, there are many cases that these two are not enough. We find that at
least in one-half of the profiled traces, keeping only running mean and last
value increases error by 32 to 82%.

The reason for this high error rate is the lack of forecasters that fall
in between running mean and last value in terms of their responsiveness.
We observe that the exponential smoothing models (models 3–7), which are
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exponential smoothing predictors with relatively small gain factors (5–30%),
are also heavily used in our traces. Here, we find that 5% exp smoothing and
10% exp smoothing are generally interchangeable, with an error increase of
0.6%, at most. Similarly, 20% exp smoothing, 30% exp smoothing, and 40% exp
smoothing are also interchangeable.

We formalize these observations into three rules with which we eliminate
forecasters. We remove any model

—that we can replace with another model with 1% or less error rate across
all traces. Most median-based models satisfy this rule and are replaced with
other models.

—for which there is another model with significantly lower cost that can replace
it with a small increase in error (<5%). We replace sliding median window
31 with median window 5 using this rule;

—for which there is a combination of other models that enable a similar error
rate. Most exponential smoothing predictors satisfy this rule, as we described
above, and, thus, are eliminated.

As a result of profiling, we identify the predictors that are most heavily used
and that have the best performance. The predictors that we identify include both
the agile (last value) and conservative predictors (running mean) and the ones
that are in between (median window 5, 5 and 20% Exponential Smoothing).
These five predictors (shown in bold in Table I) trade off cost and prediction
error most effectively. However, these findings are valid only for the traces that
we profiled. To understand the generality of our results, we evaluated them
on a second, completely different, set of six traces. We briefly summarize our
findings below.

In the second set, we also find the impact of median models to be marginal.
Here, we find only two traces where these predictors are used extensively and,
in both cases, the exponential smoothing and running mean predictors can
substitute them with an error that is less than or equal to 0.5%. There is only
one case where median window 5 is significant and cannot be substituted. Thus,
we eliminate all predictors except median window 5 from this group.

In addition, we find three traces in which exponential smoothing models 7–
11 are used extensively. However, in each case, we find that it is possible to
substitute them with one of the previously identified predictors without chang-
ing the error significantly. For example substituting 40% exp smoothing with
5% exp smoothing increases the error rate by 2.2%. Overall, we find only slight
changes to our initial results.

Figure 5 gives the pseudecode for NWSLite. The only significant change with
respect to NWS is the removal of windowing system. In NWSLite, we only con-
sider the entire history of the model in forecaster selection. While NWS allows
us define multiple windows to the past, enabling this mechanism is extremely
costly. Each defined window requires NWS to exercise all the predictors for
this window and thus increments the cost to levels that are prohibitive on our
target devices. Furthermore, there is no mechanism that we know that can au-
tomatically choose the best window size. Consequently, enabling one window
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for each of the five forecaster implemented in
NWSLite

forecast using current forecaster
record aggregate prediction error for current

forecaster
end for

choose forecaster with lowest aggregated error
and make final forecast using it

Fig. 5. Pseudocode for NWSLite forecast selection.

size is generally not enough; (just like NWS) we have to enable multiple win-
dows and iteratively exercise the forecasters in each. Finally, as we show in the
next section, the NWSLite performance without the windowing mechanism ap-
proaches to that of NWS. However, incorporating the windowing mechanism in
a cost-effective manner and evaluating its impact on prediction accuracy is the
primary goal of our future research.

4. NWSLITE EFFICACY

To empirically evaluate the efficacy of NWSLite, we performed experiments us-
ing a wide range of datasets, applications, and metrics. In the following subsec-
tions, we describe the experimental methodology (datasets and applications),
detail the metrics we use in Section 4.2, and present our results using these
metrics in Section 4.3.

4.1 Experimental Methodology

To empirically compare the resource forecasting system that we present in this
paper, NWSLite, to extant approaches to resource performance forecasters, we
collected traces from a wide range of resource types: CPU demand (execution
time) of application tasks, wired and wireless network bandwidth, wired net-
work latency, and CPU availability. We then used the NWSLite and competitive
approaches to make predictions using the trace data. In total, we performed
experiments on 346 traces, which produced more than seven million predic-
tions. All of the traces, with the exception of application execution times, were
made freely available to us via websites of research groups around the country
[NWS; Balachandran et al. 2002; GrADS]. We provide the details on the dif-
ferent datasets in Table II and we refer to each of the different types of data
sets (application execution times, CPU availability, bandwidth, latency, etc.) as
“groups.”

We generated execution time traces, i.e., CPU demand, ourselves us-
ing the 3-D rendering applications used in similar studies [Narayanan and
Satyanarayanan 2003; Narayanan 2002]. The applications and inputs that we
considered are shown in Table III.

GLVU [2002] allows navigating inside a 3D scene by rendering the scene from
any viewpoint of user. From an augmented reality view, Radiator [Willmott
1999] complements GLVU by computing the lighting effects for a given
scene. Both applications can easily be divided into operations [Narayanan
and Satyanarayanan 2003], which is a suitable unit for remote execution and
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Table II. Datasets Used for Evaluation

Name Trace size Description

Application 20 Traces Interactive, 3D rendering application

17,870 Predictions CPU demand. Measurements are CPU time

from user request to program response.

Network 132 Traces Observations of 64 KB–1MB TCP data

bandwidth 750,476 Predictions transfers. Three configurations: UIUC LAN

[NWS] (intercluster), UIUC campus-wide network

(intracluster), and cross-country Internet

(UIUC–UCSD)

CPU load 59 Traces Fraction of CPU occupancy time a standard

[NWS] 6,000,697 Predictions user process can obtain Observations are

in 10-s intervals.

Network 134 Traces Round trip time of TCP. Transferring 4 bytes

latency 750,305 Predictions and measuring acknowledge time. Granularity

[NWS] levels same as network bandwidth.

Wireless 1 Trace Four access points on same subnet. Traces include

bandwidth 3,028 Predictions 195 users, 300,000 flows and 4.6 GB of network

[Sigcomm01traces] traffic. Bandwidth computed in 1-min periods

Table III. Applications and Inputs Used for Evaluationa

Applications

Input scene Scene size (bytes) GLVU Radiosity

castle 385,391 Yes

cessna 200,553 Yes Yes

chevy 678,806 Yes

cloister 7,816,848 Yes

cup 97,113 Yes

dragon 3,382,396 Yes

ground-table-land 640,939 Yes Yes

ground-riverain-valley 634,007 Yes

shuttle 15,658 Yes Yes

venus 3,483,433 Yes

aWe collected ten trace files per application (3D scene-rendering programs) using differ-

ent inputs and navigation paths. Empty entries indicate that the application failed to

process the particular scene; “Yes” entries are those inputs we employed for this study.

We processed some inputs multiple times (to total ten) using different navigation paths.

fidelity adjustment. An operation (which we also refer to as a task) is the small-
est user-visible execution unit, such as viewpoint change in a rendering oper-
ation. For each application, we rendered a set of ten scenes, which produced a
total of 17,870 operations. We employed all of the inputs shown in Table III;
we processed some inputs multiple times using different navigation paths. We
consider the prediction performance for applications to be the accuracy with
which the prediction system forecasts the CPU demand of each task.

The bandwidth, CPU availability, and latency data were collected as a part
of the NWS project [NWS]. NWS network sensors use active network probes
to collect TCP/IP latency and bandwidth data on a group of geographically
distributed hosts connected via local, wide area, and Internet networks. Each
probe establishes a TCP connection, transmits a fixed amount of data, and tears
down the connection. Network sensors measure network bandwidth using a
64 KB data transfer and network latency using a 4-byte data transfer.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 32, Publication date: April 2008.



P1: PSX

TECS0703-32 ACM-TRANSACTION April 4, 2008 21:23

NWSLite • 32:17

The NWS CPU sensors combine the information from Unix system utilities
vmstat and uptime with periodic active CPU occupancy tests to provide mea-
surements of CPU availability. The uptime utility reports the average number
of processes in the run queue over the last 1, 5, and 15 min. The sensor uses the
average load over the 1 min period and computes the CPU availability by using
the idle, user, and system time output from vmstat utility. The CPU availability
is measured as the fraction of CPU occupancy time a standard user process can
obtain.

The wireless bandwidth traces we used were collected during the
SIGCOMM’01 conference [Sigcomm01traces]. The conference building was cov-
ered with four 802.11b access points. The traces span a 3-day period capturing
300,000 flows generated by 195 users consuming a total of 4.6 GB of bandwidth.

Note that, NWSLite includes the five forecasters that we selected using pro-
filing (marked in bold color in Table I). We use these five forecasters across all
our evaluations.

4.2 Evaluation Metrics

We present our empirical evaluation of the different prediction systems in terms
of both accuracy and computational cost. We use three metrics, described in this
section, to evaluate predictor accuracy. We use instruction count (both total and
floating point) as the metric for predictor cost.

The first of the three metrics we use to evaluate predictor accuracy is error
deviation. We define error deviation as:

MSE =
∑n

i=1(xi − yi)
2

n
Error deviation =

√
MSE (8)

where x is the set of n predictions and y is the set of n corresponding observa-
tions. The mean square error (MSE) is the average square prediction error over
the n pairs, (x, y). The error deviation is the square root of the mean square
error. Error deviation describes the error in absolute terms and represents (in
analogy) the standard deviation of the errors with respect to the expectation
constituted by the forecast. Error deviation accounts for outliers and is more
sensitive to incorrect predictions than is absolute error in which the absolute
value of the error is used.

However, the error deviation is most meaningful when comparing the per-
formance of predictors on the same time series. To provide a comparison across
different series, we use a second metric that is the ratio of error deviation over
the average observed value, i.e., the relative error rate:

Relative error rate =
√

MSE
observed mean

(9)

This metric provides insight into how severe the error is in terms of the mag-
nitude of the average measured value. For example, an error of 2-MB/s is large
in a 10-MB/s link, but may not be significant in a 100-MB/s link.

The third metric we use for reporting prediction error is similar to relative
error rate, however, instead of using the mean as the expected value, we use the
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Table IV. Error Deviation for a Set of Representative Tracesa

Description Units Avg NWSLite NWS LSQ RPF

APP1—best 148.85 5.29 5.36 8.18 22.01

APP2—median s 9.18 1.32 1.33 2.39 5.70

APP3—worst 169.75 135.12 138.06 145.39 186.43

BW1—within cluster 65.80 17.16 16.96 52.11 17.19

BW2—cross-cluster Mbits/s 76.52 13.31 13.33 59.28 13.51

BW3—cross-country 4.54 0.88 0.86 78.06 1.16

CPU1—best 1.99 0.02 0.02 13.90 0.03

CPU2—median CPU 0.54 0.02 0.02 14.45 0.05

CPU3—worst fraction 1.39 2.67 2.68 3.11 2.66

LAT1—within cluster 13.94 16.87 16.89 41.12 17.05

LAT2—cross-cluster ms 2.34 8.31 8.32 46.83 8.34

LAT3—cross-country 77.22 14.29 12.75 81.82 13.15

WBW Kbits/s 206.67 193.78 194.50 255.25 261.74

aThe third column is the average of the measured values, the next four columns show the error deviation

for each of the prediction systems. The APP and CPU datasets are sorted with respect to error deviation/
average and best, median, and worst cases are shown. For the BW and LAT datasets, the average error

deviation within cluster, across cluster, and across country are reported.

absolute value of the forecast. This metric, called predictability, indicates how
predictable the series is relative to the forecasts it generates. It differs from the
relative error in that it treats each forecast as a conditional expectation that it
uses to normalize the error, instead of using the overall measurement mean.
We compute predictability as:

∑n
i=1

|xi − yi|
|xi|

n
(10)

4.3 Predictor Accuracy

We next present the results from our empirical comparison between NWSLite
and competing prediction systems: The network weather service (NWS),
Odyssey (LSQ and ODY-BW,LAT), and the remote processing framework (RPF).
We implemented all of forecasters as efficiently as possible using the C lan-
guage; we compiled each using gcc and -O2 optimization. Unlike NWSLite and
the NWS, the LSQ and RPF methods are parametric models and, hence, require
parameterization. For each model, we created a pool of parameter settings, that
included the published values [Narayanan and Satyanarayanan 2003; Flinn
et al. 2002; Noble et al. 1997] as well as our own values, resulting in 18 different
forecasters. For conciseness, we selected the best performing parameterization
for each over all of the datasets we considered. The full results are available in
our technical report [Gurun et al. 2003].

Table IV compares the error deviation (Equation 8) of the predictors using
three representative traces, for brevity. In the application (APP) and CPU avail-
ability (CPU) datasets, we sorted the traces with respect to the error deviation/
average of NWSLite and selected the best, worst, and median, which we report
in the table. For the wired network data (bandwidth (BW) and latency (LAT)),
we instead report data for three different types of links: intracluster, inter-
cluster, and intercampus (across country). For wireless (WBW), we only have a
single trace and, thus, show data only for it.
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Fig. 6. Relative error rate (Equation 9). This metric shows how severe the error is with respect

to the average measured value. The LAT has the highest relative error rate among all forecasters.

However, as most latency observations are very small (around 1 msecs), the absolute error is small.

The first three columns of the table shows the description, trace name, and
value units for each trace. The third column, Avg, shows the average observed
value. The final four columns show the error deviation for each of the four pre-
dictors: NWSLite, NWS, LSQ, and RPF. LSQ and RPF are parameterized as
described in Section 2 and identify the best-performing, converging parameter-
izations of each technique.

The NWS and NWSLite have almost identical error deviations in every case.
LSQ performs well for applications (as was shown in prior work [Narayanan and
Satyanarayanan 2003]), but it is the worst-performing predictor for all other
types of data. NWSLite performs better than LSQ and RPF in almost every case
and is significantly better than both LSQ and RPF in most cases. For example,
in the application group, for both shuttle and cloister NWSLite performs three
times better than RPF. The wireless dataset is especially challenging. All the
forecasters show a high error rate.

Figure 6 shows the relative error rate of the predictors across all of the traces
in each group. The information in the graph confirms the results of Table IV.
NWSLite performance is very similar to that of the NWS; in all groups it enables
the best prediction error. LSQ is ineffective for the bandwidth, CPU, and latency
groups. RPF performs quite well for the CPU and bandwidth groups and exceeds
NWSLite performance for network latency by 1.5%. RPF is the worst predictor
however, for the application and wireless groups. For the application group, the
average error rate of RPF is 86% higher than that of NWSLite.

We also compared the performance of predictors with Odyssey’s specialized
smoothing filters for bandwidth and latency, which we refer to as ODY–BW and
ODY–LAT (omitted for clarity). ODY–BW performed 25% worse than NWSLite
and ODY–LAT performed 19% worse than NWSLite.

Figure 7 shows the predictability (Equation 10) of the series given each pre-
dictor. This metric assumes that predictor is a valid conditional expectation
that can be used to normalize the error at each point of the trace. The lower
the value the more accurate the forecaster. Since the variance of the results is
high, we normalized the results to NWSLite for each group.
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Fig. 7. Predictor predictability (Equation 10). Because of high variation among forecasters, the

values are normalized to NWSLite for each group. The lower the value, the more accurate the

forecaster.

The predictability results support our findings in Figure 6. NWS-Lite is as
accurate as NWS in all cases and it performed significantly better than the
parameterized forecasters, in most cases. The single exception is the latency
dataset, in which RPF is the winner. However, the difference between RPF and
NWSLite is very small. In contrast, the accuracy of RPF is significantly worse
than NWSLite for the application, CPU, and wireless bandwidth data, em-
phasizing the difficulty of finding a good parameterization for the general case.
These results also show that, with the exception of the application dataset, LSQ
always performs worse than the predictors based on smoothingfilters. In the
application dataset, LSQ is approximately 40% more accurate than RPF. How-
ever, it is still significantly worse than NWSLite. The predictability of NWSLite
is considerably higher than even the highly tuned predictors ODY–LAT and
ODY–BW (not shown in figure). For the latency dataset, ODY–LAT is 13% less
predictable than NWSLite; whereas in bandwidth dataset, NWSLite does 21%
better than ODY–BW.

An interesting case is the behavior of RPF in Figures 6 and 7; even though
the relative error rate of RPF is small, its predictability is not. This is because
of the characteristics of CPU dataset. The CPU availability values are in the
range (0, 1), or (0, n) if there are n processors. As such, most of the time the
values are a fraction of 1. This results in a small value for the sum of square
errors, even though the errors are high relative to the expected value.

4.4 Computational Cost of Prediction

In addition to studying prediction error, we also considered the cost of per-
forming prediction on a resource-restricted device. To our knowledge, no prior
studies that use prediction on mobile devices consider the resource consumption
of the predictors themselves.

We first compare the predictors in terms of instructions required for one
prediction. We extracted this information by using the SimpleScalar [Burger
and Austin 1997] simulator. Figure 8 shows the average cost of each predictor.
NWSLite uses 55 floating-point instructions per forecast. Even though this is
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Fig. 8. Forecaster cost as number of instructions executed (floating-point (FPOINT) and TOTAL)

per prediction.

Table V. Execution Cost Comparison per Prediction

Prediction Floating Total Execution time

system point instructions (μs)

NWSLite 55 592 381.34

NWS 2626 9388 10231.31

LSQ 42 138 295.27

RPF 8 50 154.9

more than the cost of RPF and LSQ, which use 8 and 42, respectively, the
accuracy of NWSLite significantly exceeds both of these predictors.

As most resource-restricted devices lack a floating-point coprocessor, floating-
point instructions are very expensive. We break down the instruction counts
into floating-point and nonfloating-point instructions in the first two columns
of Table V.

We also executed the predictors on a real resource-restricted device: An iPAQ
H3800 hand-held computer from Compaq [Compaq Computer Corporation]. The
iPAQ has a 206-MHz Intel StrongArm CPU and runs Familiar Linux, version
0.5.3. The execution times (in μs) are shown in the final column of the table.
These times include the cost of IO to read the trace file from flash memory and
to print the results.

The execution time of NWSLite is approximately 4% that of NWS, but enables
prediction accuracy that is nearly equivalent. Given that it requires only 381 μs
to execute a prediction, including the IO, NWSLite is a more attractive solution
for on-line forecasting using resource-restricted devices, than the parametric
and less accurate models of Odyssey and the RPF.

4.5 Evaluation Summary

We summarize the result of our findings in Table VI. To make our results
comparable to previous studies [Narayanan and Satyanarayanan 2003], we
report summary performance in terms of percentile error. We define the X per-
centile error, EX , as the maximum absolute error for X% of the experiments.
For example, for the bandwidth dataset, E95 of NWSLite is 25.6, meaning that
95% of the time the prediction error of NWSLite is within 25.6 kilobits/s. The

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 32, Publication date: April 2008.



P1: PSX

TECS0703-32 ACM-TRANSACTION April 4, 2008 21:23

32:22 • S. Gurun et al.

Table VI. Results in Summary: Percentile Errora

APP BW CPU LAT WBW

E90 E95 E90 E95 E90 E95 E90 E95 E90 E95

NWSLite 3.32 7.34 10.27 25.70 0.02 0.04 15.77 24.57 198.13 351.09

NWS 3.34 7.46 9.60 25.58 0.02 0.04 15.80 24.50 202.77 358.80

LSQ 5.87 13.31 14.10 28.46 0.06 0.12 16.42 26.87 230.59 422.98

RPF 17.15 38.70 10.60 25.56 0.08 0.21 16.19 24.92 326.34 533.05

ODY–LAT 3.76 8.81 9.92 39.72 0.02 0.09 16.32 29.85 197.43 335.17

ODY–BW 3.46 7.89 7.38 42.54 0.02 0.08 16.88 31.49 192.99 354.56

aWe define the X percentile error, EX , as the maximum absolute error for X% of the experiments. The

table compares the E90 and E95 of all forecasters for all five datasets and prediction systems studied.

reason we use absolute rather than relative error is to avoid skewed data in
CPU and latency datasets. We report the results for NWS, NWSLite, LSQ, and
RPF, as well as for the two other smoothing filters that we studied, ODY–LAT
(the Odyssey network latency predictor) and ODY–BW (the Odyssey network
bandwidth predictor).

The results show that NWS and NWSLite are general enough that they
perform well in all datasets. Even though parameterized forecasters can match
NWSLite in some datasets, they fail in others. As an example, the performance
of ODY–BW is close to NWSLite in APP dataset, but it is significantly higher
in BW, CPU, and LAT datasets. The same pattern also exists for ODY–LAT and
RPF. RPF matches NWSLite in BW and LAT, but it is significantly worse in
APP and CPU datasets.

Another pattern in the results is that both NWS and NWSLite perform better
than all others when a higher percentage of predictions considered. This sug-
gests that NWS and NWSLite can better adjust themselves to sudden changes
in performance patterns by switching to another model; the other models must
simply rely on their static parameters.

The wireless bandwidth dataset is significantly different than other datasets.
The error rates are very high, i.e., E90 is around 200-Kbits/s on a 11-Mbits/s link;
hence, none of the forecasters performed at a satisfactory level. This emphasizes
the need for additional study of and novel forecasters for wireless network
bandwidth data.

The success of NWSLite results from its capability to dynamically switch
between a carefully chosen set of competing models, based on previously ob-
served accuracy. If the dynamics of the observed dataset changes over time,
NWSLite can adapt to the new conditions; the prediction systems of Odyssey
and RPF cannot, and as such, are data (input) dependent. For example, ex-Q5
ponential smoothing with a gain of 0.05 can be the most accurate predictor
at some point, however, a transient or permanent change can occur so that
the running mean can become the most accurate. In this case, NWSLite will
respond by switching to running mean if the change is persistent enough to
cause the aggregate error ranking to change. Odyssey and RPF are statically
configured by a set of predetermined parameters. Thus, even though there are
individual cases that other predictors can match the accuracy of NWSLite, they
are unable to do well across dynamically changing series and to different types
of resource performance data.Q6
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The flip-flop filter extension to Odyssey [Kim and Noble 2001], described in
Section 2, incorporates some adaptivity by using two different parameter set-
tings in its exponential smoothing predictor. However, exponential smoothing
cannot always produce the best prediction accuracy (given any gain param-
eters). NWSLite incorporates exponential smoothing using two different gain
factors but is more general and adaptive than this filter, since it considers a wide
range of other prediction techniques that can enable significant improvements
in accuracy at low computational cost.

5. ENERGY/PERFORMANCE BENEFITS OF PREDICTION ACCURACY

The previous section discusses NWSLite efficacy and compares it to other popu-
lar prediction methods. Our findings, which we gather using statistically sound
metrics, show that NWSLite outperforms its competitors significantly. However,
a key question that is remains is how much this improvement in accuracy trans-
lates into actual energy savings. Here, we answer this question by evaluating
NWSLite within a remote execution system.

Offloading computation to remote, wall-powered, resource-rich servers can
provide significant power savings. For offloading to be beneficial, it should be
employed only when the benefits of remote computation exceeds the cost of
offloading itself. This requires accurate modeling and prediction of local and
remote resource supply, as well as the resource demand of the task. Our goal is
to identify the degree to which higher accuracy impacts the decision whether
to offload.

We next discuss the components required for a remote execution and detail
the significant parameters. In Section 5.2, we describe our computation offload-
ing setting. Finally, we show the results from our experiments in Section 5.3.

5.1 Remote Execution

Remote execution (aka computation offloading) is a popular technique that ex-
tends the computational capability of mobile, resource-restricted devices [Flinn
et al. 2001; Rudenko et al. 1998, 1999; Kremer et al. 2001; Li et al. 2001].
Furthermore, depending on network communication cost, it can reduce the de-
mand on local hardware resources and conserve significant amounts of energy.
Figure 9 depicts the general design of a remote execution system. Using remote
execution, application tasks are off-loaded from battery-powered mobile devices
to wall-powered, higher-performance servers.

To decide whether a particular task should be offloaded, a remote execution
system must first compute the resource demand of the application task. De-
mand can be defined using different metrics, and such as CPU cycles, network
bandwidth, and memory pages, according to the overall goals of the system.

To determine how best to accommodate demand, a remote execution system
must evaluate how best to employ its supply—the set of resources, local and re-
mote, that it has available to it for task execution. The system computes whether
computation off-loading will be beneficial, according to its set of constraints, us-
ing a cost model. When cost of local execution (i.e., Ll ) exceeds that of remote
execution (i.e., Lr ), the system off-loads work to the server. The cost model must
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Fig. 9. Components of a typical remote execution system. The decision process includes forecasting

the available resource supply both at the client and server and application resource demand.

consider both the task execution characteristics as well as the highly variable
performance of the underlying resources that dictate computation and commu-
nication performance. However, constructing an exact cost function is nontriv-
ial since hardware components have many shared resources, such as buses and
DMA devices, that implement specific arbitration and priority policies.

Since the scope of this work is to compare NWSLite to other predictors, we
employ a general cost model that assumes no I/O overlapping. We compute the
available CPU cycles using the Odyssey model, which we give in Equation (1).
We compute the local and remote execution cost as:

Ll = Dcpu

Slcpu
(11)

Lr = Dtx

Stx
+ Dcpu

Srcpu
+ Drx

Srx
+ DrttSrtt (12)

where Ll and Lr stand for local and remote execution latency, Dcpu is the number
of CPU cycles that the application requires to complete the task, and Slcpu is the
available CPU cycles on local machine, averaged in a period of 1 s. The remote
cost is the sum of four constituent operations:

1. The time required for network transfer given the size of the demand for
network send and any needed program code (Dtx) and given the available
bandwidth (Stx) between the device and server;

2. The execution time at the server given the average number of CPU cycles
available at the server (Srcpu);

3. The time for transfer of results, e.g., data, status and rendered graphics,
back to the device given the available bandwidth between the server and
device ( Drx

Srx
); and;

4. The time required for handshake to establish connection, given the number
of packet exchanges between local and mobile device (Drtt) and network
latency (Srtt).

Since (4) commonly consists of very short packet communication between the
device and the server, the handshake operation is impacted by the latency in the

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 32, Publication date: April 2008.



P1: PSX

TECS0703-32 ACM-TRANSACTION April 4, 2008 21:23

NWSLite • 32:25

Network Lat.

Network Bw.

Supply Traces
tr

a
ce

s 
ra

n
d

o
m

ly
 c

h
o

se
n

 f
ro

m
 p

re
v.

 d
a

ta
se

ts

CPU Demand

Demand Traces

Remote CPU Avail.

Local CPU Avail. Slcpu

Dcpu

Stx,Srx

Srtt

Srcpu
Remote
Cost
Calculation

Calculation
Cost
Local L_l

L_r

M
an

ag
er

Sc
en

ar
io

 D
ec

is
io

n

NWSLite

LSQ

RPF

Drtt

Protocol Handshake

Dtx, Drx

File Size

P_1

P_4

P_5

P_3

P_2

(single message exchange)

Remote
Local or
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predicts their future state using separate predictor instances (i.e., P 1 to P 5). The decision manager

uses the forecasted values in choosing execution location.

network link between the client and server (DrttSrtt). Ll and Lr can be enhanced
to compute power, to integrate computation fidelity or battery lifetime into cost
functions.

5.2 Methodology

To better understand how much the improved accuracy enabled by NWSLite
matters to a real remote execution system, we constructed two scenarios and
simulated those scenarios using the principles described previously. In our sim-
ulation, we limited the computation offloading scenarios to one mobile device
and one remote execution server. We assumed that the local device is an HP
iPAQ H3800 and the remote device is an IBM T23 laptop. The former machine
has a 206-MHz StrongArm CPU, while the latter one uses a 1132-MHz Pentium
III. We assume that both machines are only executing our applications.

The scenarios simulate computation offloading systems that have different
goals. In Scenario1, the goal is to provide optimal userinteractivity. Many mo-
bile applications, such as augmented reality applications, and games are user-
interactive by their design, making response time a critical design parame-
ter. For such applications, computation offloading is a viable option not only
to improve response time but also to improve functionality [Narayanan and
Satyanarayanan 2003; Kremer et al. 2001]. In Scenario2, the goal is to reduce
power consumption as much as possible and to extend battery life. Scenario2
does not consider execution performance (latency) in offloading decisions.

Figure 10 shows the simulator components in detail. The simulator reads
the measured values of each of the computation offloading parameters,—CPU
demand, local and remote CPU supply, and network latency and bandwidth—
from a file and predicts their future values by running separate instances of
predictors for each type of data. Once the system computes the future values, it
calls the decision manager, which determines whether local (a return value of
0) or remote computation (a return value of 1) will be used. The simulator also
computes what the “right” or “best” decision is, once it reads the actual values,
and computes various statistics for our use in the evaluation. The simulator
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int likely offload()
{ // returns 1 if remote execution chosen, 0 otherwise

LL = predict local latency();
if (LL < 50 milliseconds) {

return 0;
}
LR = predict remote latency();
if (LL > LR) {

return 1;
} else {

return 0;
}

}

Fig. 11. Pseudocode for scenario1 decision manager.

reads and simultaneously predicts the supply and demand. We evaluate eachQ7
CPU demand trace using 32 different TCP bandwidth, network latency, and
CPU availability traces that are randomly chosen from our dataset that we
described in Table II. We report the average results.

Each offloading decision requires prediction of application CPU demand and
the state of four resources; network latency, network bandwidth, and local and
remote CPU availability. Network latency is used to compute the cost of protocol
handshake. Network bandwidth is needed to estimate cost of data transfer. CPU
availability is used to compute the cost of local and remote computation. We use
separate predictor instances on data histories to estimate next values of each
of these resources. We use GLVU and radiosity demand traces (from Table II),
for predicting CPU demand. We describe these traces in more detail, later in
this section.

Figure 11 shows the pseudocode for the Scenario1 decision engine. The en-
gine, which exists on the mobile device, offloads the task to the remote machine
if the forecasted local execution time is more than 50 ms and the forecasted
remote execution time is smaller than that of the forecasted local execution
time. The tasks that are estimated to have an execution time less than 50 ms
are never offloaded, since the human perception system can not recognize de-
lays that are less than 50 ms [Card et al. 1983]. Thus, Scenario1 favors local
execution, when appropriate, to reduce the stress on shared resources, such as
the network and remote server. We discuss the implications of this choice on
predictor efficacy in the next section.

In Scenario2, the decision process estimates power consumption for both local
and remote execution and chooses the location that leads to lower power con-
sumption. Unlike Scenario1, this scenario does not favor either local or remote
execution (i.e., it does not take execution latency into consideration). Further-
more, its power computation function assumes that the local CPU and wireless
interface in the idle state during remote execution. We detail the computation
of power consumption later in this section.

We simulated Scenario1 using GLVU and Scenario2 using radiosity. As we
explained in Section 4.1, both of these applications can be split into tasks that
can be offloaded to a remote server or executed locally. To measure the task
CPU demand (i.e., Dcpu), we captured the task execution times, in microsecond
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resolution, as a user was navigating 3D scenes on a dedicated IBM T23 Linux
laptop. We then computed the demand, in CPU cycles, as Dcpu = t × f , where
f is the CPU clock speed of the machine and t is the task execution time.
Even though Dcpu is not completely accurate and portable across architec-
tures because of differences in cache sizes and other CPU parameters (i.e.,
lack of floating-point coprocessor in StrongArm), we ignore such discrepancies
as our focus is the accuracy of predictors, not the efficiency of computation
offloading.

In our simulations, we assume that only the input data is transmitted across
the network. The data is transferred to the remote device, processed, and trans-
ferred back to the local device. The executable never moves. This is similar to
prior approaches in Kremer et al. [2001], Rudenko et al. [1999], and Flinn
[2001]. Both GLVU and radiosity tasks operate on an object file that contains
the current scene. Since the size of this file is known beforehand, there is no
need to separately predict network demand.

Prior to the data transfer, the client and the server has to initiate a session.
In our model, the initial handshake, which includes a single message exchange,
and the data transfer are done reliably, using the TCP protocol. Other imple-
mentations tend to be more complex [Flinn 2001] and use protocols like remote
procedure call, however, we do not discuss these for conciseness.

We use Equations (11) and (12) to compute local and remote execution la-
tencies in Scenario1. In Scenario2, to compute power consumption, we extend
these equations such that:

Cl = Dcpu

Slcpu
pbusy

Cr = Dtx

Stx
ptx + Dcpu

Srcpu
pidle + Drx

Srx
prx + DrttSrtt ptx

In the first equation above, Cl stands for local execution energy consumption.
We compute it by multiplying local execution latency with pbusy, which is the
average power consumption of a highly loaded handheld computer. Similar to
Lr ; Cr , the energy consumption during remote execution, is a sum of four factors:

1. The energy required for network transfer, which is network transfer
time multiplied by ptx, the average power consumption during wireless
transmission;

2. The energy consumption while waiting for execution at the server, which is
remote processing time multiplied by pidle, the average power consumption
in sleep state;

3. The energy required for network receive, which is network receive time mul-
tiplied by prx, the average power consumption during wireless receive; and;

4. The energy required for handshake to establish connection, which, given
the number of packet exchanges between local and mobile device, is equal
to network latency multiplied by (ptx).

Table VII gives the actual values of p, as measured by Li et al. [2001] on real
handheld devices.
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Table VII. Power Consumption of iPAQ Under Different Scenarios

Parameter Power (mW) Description

pidle 550 CPU idle; wireless interface off

pbusy 1150 CPU highly busy; wireless interface off

ptx 2200 Data send over wireless

prx 2100 Data receive over wireless

Table VIII. Overview of 3D Objects

Object features Number of % of Offloading decisions

Size (KB) Complexity decisions RPF LSQ NWSLite

Castle 385 Medium 78,528 32.37 32.23 32.39

Scenario1 Shuttle 15 Low 14,080 64.32 66.82 65.00

Ground-table 640 High 26,496 48.12 49.32 48.65

Cessna 200 Medium 12,736 28.33 31.83 29.72

Scenario2 Venus 3483 Very High 2,720 9.63 12.21 16.58

Ground-table 640 High 5,152 27.93 34.71 28.13

We simulated each scenario using three input scenes. We chose the scenes
arbitrarily, from Table III, however, we were careful to choose one small, one
medium and one large scene. For GLVU, we used castle, shuttle, and ground-
table-land. For radiosity, we used cessna, venus, and ground-table-land. In each
scenario, we compared the efficacy of NWSLite with RPF and LSQ using the
best performing parameterization, as we described in Section 4.3. We did not
include NWS in our evaluations because of its high cost.

5.3 Simulation Results

In this subsection, we evaluate how prediction effects the performance of the
decision engine. There are two ways that the decision engine can fail for a
given task: (1) the decision engine chooses local execution even though remote
execution is more beneficial; (2) the decision engine chooses remote execution
even though local execution is more beneficial. We refer to the former as wrong
locals and the latter as wrong remotes. We use wrong decisions to refer to the
sum of both wrong locals and wrong remotes.

Table VIII gives a brief overview of all the 3D objects that we used. The
first part of the table describes object features, including size, in Kilobytes, and
complexity, in scales that change from “low” to “very high.” A higher complexity
object has more vertexes and edges per unit area and more details, such as
3D information, and color. Such increase in complexity requires more network
demand, but not necessarily more CPU demand, because rendering algorithms
can intelligently prune out many details, such as the vertexes that are not
visible during processing. For example, even though ground-table is almost two
times larger than castle, its average rendering cost is approximately the same
as that of the castle.

The rest of the table gives the total number of task offload decisions and the
percentage of offload decisions given by each predictor. A high number of task
offload decisions shows that the user navigated the object for a longer duration,
generating a larger number of tasks. This is typically the case for the GLVU
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Fig. 12. Percentage of wrong decisions. The striped and solid parts show wrong remote and local

execution decisions, consecutively. NWSLite beats other predictors in each benchmark.

tasks in Scenario1, since the tasks are shorter than the computationally de-
manding Radiosity tasks. The ratio of tasks that the predictors chose to offload
varies from 10% (venus in Scenario2) to 64% (shuttle in Scenario1), depending
on task characteristics. However, these numbers show only the degree to which
predictors utilized local and remote execution and does not indicate whether
these decisions are correct.

In Figure 12, we compare each predictor in terms of wrong decisions. Each
bar shows the percentage of wrong decisions. The striped and solid sections
represent the wrong remotes and wrong locals consecutively. For example, for
castle, approximately 2.6% of all decisions were wrong and the ratio of wrong
locals and wrong remotes were approximately equal. The last three bars show
the average. We compute average by equally weighing all benchmarks; for ex-
ample, if a scene has 450 wrong offloading decisions among its 900 tasks, and
another scene has 10 wrong offloading among 100 tasks, we compute the aver-
age of wrong offloading decisions as 30%, not 46%.

In a remote execution system, the computation offloading decisions show a
boolean characteristic. The possibility of a wrong decision increases when the
gap between the cost of local and remote execution is small. That is because
the small gap cannot compensate any prediction errors. An example is venus in
Scenario2. Venus is an extremely sophisticated scene. Because of its size, remote
execution is very costly, however, local execution is not (i.e., even though venus
is approximately 5 times larger than ground-table-land, the CPU demand is
only 2.2 times larger, on average). The large margin between the cost of local
and remote execution compensates most prediction errors; therefore, all the
predictors can achieve very few wrong decision rates (<1%).

Overall, the wrong decision rate was less than 10% for all benchmarks.
NWSLite was always better than the other predictors. In Scenario1, the wrong
decision rate for NWSLite, LSQ, and RPF were 4.1, 5.1, and 7.5%, consecutively.
In Scenario2, NWSLite performed even better. The rate was 2.3% for NWSLite
and 4.7 and 5.2% for LSQ and RPF. This corresponds to 67% fewer wrong deci-
sions than RPF and 14% fewer wrong decisions than LSQ for the first scenario.
In the second scenario, the difference between NWSLite and other predictors
is even larger; NWSLite gave 95 and 73% fewer wrong decisions than RPF and
LSQ, consecutively.
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Table IX. Impact of Wrong Decisionsa

No Prediction Predictor Guided

All local All remote Oracle RPF LSQ NWSLite

Castle 10548 7972 6946 7279 7266 7222

Scenario1 Shuttle 711 339 339 351 354 341

(s) Ground-table 3515 3499 3099 3258 3249 3250

Cessna 7810 1747 1530 1629 1579 1569

Scenario2 Venus 7912 4944 4320 5941 5571 5330

(J) Ground-table 6815 2032 1862 2014 1959 1928

aThe table shows the total (i.e., across all experiments) cost of execution for each policy. The first two columns

show the cost when we execute fully local and fully remote. The next column (Oracle) shows the cost when we

have access to true values rather than predicting them. The next three columns show the cost for RPF, LSQ,

and NWSLite.

The wrong decisions were almost equally distributed among local and remote
execution except the ground-table-land benchmark in Scenario2. In ground-
table-land, only for the LSQ predictor, wrong locals were dominant. A plot of
cost function unveils an interesting phenomenon: even though remote execution
cost is stable, there are frequent, steep changes (i.e., dips) in local execution cost.
When such a dip occurs, LSQ tends to over correct its parameters, resulting a
steeper reduction (i.e., an underestimation) in local cost estimation, resulting
in many wrong local execution decisions.

Even though a decision can be either right or wrong, not each wrong decision
is equal in terms of its impact on the performance of the system. When the cost of
local and remote executions are close, the impact of a wrong decision is relatively
small. On the other hand, when the costs diverge, i.e., for example, when local
execution is much cheaper than remote execution, an incorrect decision can be
disasterous. In the latter case, however, it can be argued that most predictors
can get the correct decision easily as the large delta between local and remote
execution cost forgives most of the inaccuracy in prediction. Thus, in Table IX
we compare the forecasters in terms of their impact on the total performance
of the system.

The first two columns of the table show the cost of executing all the tasks
locally, and remotely. Here, in scenario1, while computing the cost of all remote
execution, we comply with the decision policy, and assume the tasks that are
shorter than 50 ms are locally executed. In the next column, we show the cost
when we use an Oracle that knows the true cost (an unrealistic, baseline sce-
nario). The remaining three columns compare the execution cost when we use
RPF, LSQ, and NWSLite for prediction. In the table, the costs are shown in
seconds for Scenario1 and in joules for Scenario2.

In general, we find that an all remote execution policy is cheaper than an all
local execution policy. Scenario2 benefits more from remote execution because
of the increased computational complexity of radiosity tasks. In addition, both
in Scenario1 and Scenario2, the predictors improve the results significantly (up
to 15%) when compared to an all remote policy.

When we compare the predictors among themselves, NWSLite continues to
beat the others. In Scenario1, all predictors are exceptionally successful and
close to Oracle, leaving little margin to improve on. However, the impact of
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Fig. 13. Cost of wrong decisions. The striped and solid parts show wrong remote and local execution

decisions, consecutively. Scenario1 is very asymmetric; for castle and ground-table-land, almost all

cost is because of wrong remote execution decisions and for shuttle all cost is a result of wrong

local executions. This is expected because of asymmetric offloading rules. NWSLite beats other

predictors in both scenarios.

NWSLite is still obvious. In castle, for example, the total execution time is
7279 s for RPF and 7222 s for NWSLite. In Scenario2, where most tasks are

Q8

much larger (and each wrong decision is more costly), the performance differ-
ence between predictors is much more evident. Here, using NWSLite can save
30 to 241 J more than its closest competitor. Overall, we find that NWSLite
either significantly outperforms the other predictors, or at least matches their
performance.

In Figure 13, we compare the cost of wrong decisions. We compute the cost
as

∑
ci/n, where ci is the cost of a wrong decision i and n is the number of all

tasks. We compute ci as the amount of extra response time -or extra energy
consumption, depending on the scenario between the correct decision and the
wrong decision. In other words, this metric gives the expected wrong decision
cost per task. The results are in ms for Scenario1 and in millijoules (mJ) for
Scenario2.

Figure 13 shows that in Scenario1 there is a very uneven cost distribution
among wrong locals and wrong remotes. In castle and ground-table-land, most
cost is because of wrong remotes, in shuttle, all cost is results from wrong
locals. This is because of the asymmetric nature of Scenario1; the computation
offloading decision is given only when the task is expected to last more than
50 ms; therefore, only large tasks are offloaded and a wrong decision adds a
huge error. We can see this effect clearly in castle and ground-table-land, but
not in shuttle. Because of the relatively lower CPU demand of shuttle, (i.e., a
very small scene of 15 KB), the predictors always estimated that local execution
was adequate and never chose remote execution.

Table X shows the expected penalty for a wrong decision, in other words,
it shows how costly a wrong decision is. We compute it by dividing the to-
tal cost of wrong decisions to the number of wrong decisions nw, that is,∑

ci/nw. The results are in milliseconds for Scenario1 and in millijoules for
Scenario2.

The expected penalty is not significantly different across predictors. In
Scenario1, RPF had slightly lower penalty per miss, however, its effect was
offset by the high number of wrong decisions. (i.e., Figure 12). In general,
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Table X. Expected Penalty for a Wrong Decisiona

Wrong local execution Wrong remote execution

decisions decisions

RPF LSQ NWSLite RPF LSQ NWSLite

Castle 18.76 12.90 18.15 235.28 332.29 290.32

Scenario1 Shuttle 50.84 45.03 39.58 0 0 0

(msecs) Ground-table 13.15 9.47 6.18 110.76 164.45 198.96

Cessna 217.47 43.66 280.86 66.77 89.85 131.85

Scenario2 Venus 139.04 124.35 52.56 1464.00 1695.26 1315.97

(mjoules) Ground-table 55.72 24.23 30.66 119.87 1278.40 227.11

aThe cost of a wrong decision is proportional to the complexity and size of a scene. For example, for

venus, the cost is extremely high, however for shuttle it is very low. The expected cost is almost same for

NWSLite and other predictors.

predictors have fairly close results, however, ground-table-land in Scenario2, is
marginal. As we explained before, this is because of the LSQ, which consistently
underestimates the cost of local execution.

Table X also emphasizes the asymmetry in cost structure: In Scenario1, a
wrong remote execution decision was much more expensive than a wrong lo-
cal execution decision (i.e., 200- versus 20-ms latency). Therefore, in settings
where power consumption is not a concern, it may be beneficial to continue local
execution in parallel. The same cost structure also exists in Scenario2. Here,
the wrong remote execution decision penalty was 410 mJ, in contrary to the
wrong local execution decision penalty, which was only 107 mJ.

6. DISCUSSION

In this paper, we extend our prior work [Gurun et al. 2004] on general-purpose,
non-parametric prediction for resource-restricted computers. In particular, we
provide a thorough description of our heuristics-based approach with a justi-
fication of the parameters that we chose, and an investigation of the benefit
of extra accuracy in a computation offloading setting. In this section, we pro-
vide a discussion of various trade-offs that impact the design of a prediction
algorithm, and possible limitations of our approach and how to address these
limitations.

With NWSLite, we provide a fully automatic and dynamic tool that attempts
to balance computational complexity and prediction accuracy. While it is often
the case that prediction accuracy can be increased by using sophisticated and
computationally expensive techniques, finding the optimum technique requires
finding a balance between the available computational resources, the benefits
of extra accuracy, and the nature of the workload itself.

NWSLite is adaptive and dynamic in the sense that it can choose the most
appropriate predictor by evaluating the past prediction errors. However, for
doing so, NWSLite has to run all its forecasters in parallel. There is no way
we can dynamically enable/disable a group of forecaster models in NWSLite,
since NWSLite (and NWS) forecaster selection algorithm chooses the model,
depending on the past history (if forecasters are disabled, they do not have a
complete past history) .
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However, under certain conditions, the additional complexity of a more so-
phisticated prediction algorithm may be more desirable. For example, in an
offloading setting, if the tasks are extremely large and computationally expen-
sive, the additional cost of a computationally expensive forecaster can be amor-
tized effectively. Furthermore, not all embedded systems are equal in terms of
their computational resources. It is more desirable to have a mechanism that
can scale up/down its computational complexity, depending on the available
resources of the system.

While NWSLite cannot dynamically enable/disable its forecaster models at
present, users can extend NWSLite (such as to have a minimum version with
five predictors, a medium version with ten of them, and a full version) and then
choose the best one, depending on the characteristics of the task. For example,
if we want to offload a substantially large task, we can use the full version
for the whole duration of time. For a smaller task that can be completed in
milliseconds, we can use the minimum version, etc. While we did not evaluate
such a mechanism within the scope of this work, since NWSLite is already close
to NWS in accuracy, the framework that we developed for NWSLite (including
the datasets, source code and experimental setup) can easily be used for any
future studies toward this direction.

In our work, we evaluate NWSLite using a large set of traces including CPU
and network availability and CPU demand. We collect CPU demand traces
using augmented reality applications, which we believe will benefit from remote
execution. In our offloading scenarios, we evaluate each scene individually, in
other words we do not consider the case that the user switches back and forth
in between scenes. Thus, in some way, one can argue that we parameterize
the predictors with each scene. However, since the CPU demand in each scene
varies greatly (for example, in venus the CPU demand changes 200-fold), we
believe the impact of such parameterization is insignificant.

Finally, there are mobile applications other than remote execution (for ex-
ample dynamic voltage scaling) that can benefit substantially from an accurate
and low cost predictor. The framework that we developed within the context
of this work can be very beneficial to evaluate and improve new predictors for
these applications.

7. CONCLUSION AND FUTURE WORK

We present a light-weight, computationally efficient, prediction utility for mo-
bile devices called NWSLite. The system is an extension of the network weather
service (NWS), a dynamic measurement and forecasting toolkit designed and
developed for adaptive application scheduling in computational-grid environ-
ments (performance-oriented distributed systems). We identify 5 of the 24 NWS
forecasters for NWSLite implementation, that trade-off computational cost for
predictor accuracy most effectively.

We evaluate NWSLite using over 300 different traces of application execution
times, CPU availability, wired network bandwidth and latency, and wireless
bandwidth. In addition, we compare NWSLite to the NWS and to two other
extant remote execution prediction systems. We find that NWSLite consistently
outperforms the latter and achieves prediction accuracy similar to that of the
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NWS. However, NWSLite achieves this level of accuracy at a significantly lower
execution cost than the NWS.

We show the utilization of NWSLite on a computation offloading platform, by
evaluating it for resource supply and demand prediction using two computation
offloading scenarios. In the first scenario, NWSLite beats two popular predic-
tors, RPF and LSQ, by 67 and 14% fewer wrong decisions, consecutively. In the
second scenario, NWSLite beats those predictors even with a higher margin:
95 and 73% fewer wrong decisions. NWSLite achieves this rate without any
significant increase in cost.

In future, we are planning to extend our work toward a more scalable pre-
dictor that can dynamically scale up/down its computational complexity and
prediction accuracy. In addition, we are planning to evaluate NWSLite against
other predictors, including the flip/flop predictor that was developed in Kim and
Noble [2001]. Finally, we are planning to evaluate NWSLite in other embedded
system applications, including dynamic voltage scaling.
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