
Reducing Transfer Delay Using Java Class File Splitting and Prefetching

Chandra Krintz Brad Calder Urs Hiilzle

Department of Computer Science and Engineering
University of California, San Diego

{ckrintz,calder) @cs.ucsd.edu

Abstract

The proliferation of the Internet isfueling the development
of mobile computing environments in which mobile code is
executed on remote sites. In such environments, the end user
must often wait while the mobile program is transferredfrom
the server to the client where it executes. This downloading
can create significant delays, hurting the interactive experi-
ence of users.

We propose Java classjle splitting and class$le prefetch-
ing optimizations in order to reduce transfer delay. Classfile
splitting moves the infrequently used part of a class file into
a corresponding cold classJile to reduce the number of bytes
transferred. Java class file prefetching is used to overlap
program transfer delays with program execution. Our split-
ting and prefetching compiler optimizations do not require
any change to the Java Virtual Machine, and thus can be
used with existing Java implementations. Class jile splitting
reduces the startup time for Java programs by 10% on av-
erage, and class file splitting used with prefetching reduces
the overall transfer delay encountered during a mobile pro-
gram’s execution by 25% to 30% on average.

1 Introduction

The Internet today provides access to distributed resources
throughout the world. The network performance available to
an arbitrary user program in this environment is highly var-
ied and relatively modest compared to the available process-
ing power. For example, a typical user might be connected
at less than 1 Mbit/s while running programs on a machine
capable of executing several hundred millions of instructions
per second.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish. to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA ‘99 11199 Denver, CO, USA
0 1999 ACM l-591 13s238-7/99/0010...$5.00

Computer Science Department
University of California, Santa Barbara

urs @cs.ucsb.edu

Mobile applications use the resources of the Internet to
perform computation; in this context they are programs that
transfer over networks for remote execution. These pro-
grams, e.g., Java applets, are commonly downloaded on de-
mand as opposed to being stored locally. The performance of
mobile programs depends upon both the network latency and
bandwidth available as well as the processor speed through-
out the execution. Given the gap between processor and
network speeds, mechanisms are needed to compensate for
network performance in order to maintain acceptable perfor-
mance of mobile programs.

Program performance is commonly measured by the time
for overall program execution. However, Internet applica-
tions frequently include interactive participation by the user.
For such programs, performance can be measured by the
amount of delay a user experiences during the interactive
session. For example, if a user presses an arbitrary button
on an applet, execution should proceed accordingly as if the
program is stored locally. When files must be downloaded
in order to continue, the user instead experiences a delay in
execution. If delays are long and frequent, as is common
for applet execution, performance is greatly degraded. Re-
search has shown that these delays are a crucial factor in a
user’s perception of overall application performance. Early
work investigated the effect of time-sharing systems on pro-
ductivity (e.g., see [2]), and concluded, among other things,
that delays in system response time disrupted user thought
processes.

In this paper, we focus on Transfer Delays, i.e., the de-
lays created when an application is stalled waiting for code
or data to arrive over a network connection. Our goal is to
eliminate transfer delays in mobile Java programs by reduc-
ing the size of the class files transferred and by overlapping
transfer with execution. To accomplish this, we propose the
use of two new Java compiler optimizations - Java class file
splitting and class file prefetching. Both optimizations are
implemented purely at the Java level and require no modifi-
cation to the Java Virtual Machine.

Class jile splitting partitions a class file into separate hot
and cold class files, to avoid transferring code that is never

276

or rarely used. Class file splitting helps reduce the overall
transfer delay and invocation latency. Invocation Latency is
the time required to begin execution of a program. In Java,
this includes the time for transfer and loading as well as any
additional file processing required by the execution environ-
ment, e.g. verification.

Class file prefetching inserts prefetch commands into the
bytecode instruction stream in order to overlap transfer with
execution. The goal is to prefetch the class file far enough in
advance to remove part or all of the transfer delay associated
with loading the class file.

In section 2, we describe the execution and verification
model currently employed by the commonly available Java
execution environments. Section 3 describes our implemen-
tation of class file splitting to reduce transfer delay. Sec-
tion 4 then describes our approach for class file prefetching.
Section 5 describes the programs examined and our simu-
lation methodology, and section 6 provides performance re-
sults when using verification. Section 7 shows the perfor-
mance of our optimizations if no verification is used in a
trusted environment. Section 8 examines the distance be-
tween initialization of a class reference and the first time the
reference is actually manipulated by the user program. Sec-
tion 9 provides related work for reducing transfer delay, and
section 10 summarizes the contributions of this paper.

2 Java Execution

Java programs are organized as independent classfiles, each
of which contains the methods and state variables required
to implement a class. Before any method can be executed or
any state variable can be modified within a class file, the en-
tire class must be transferred to the location where execution
takes place.

Most JVM implementations load classes on demand at the
time of the first reference to each class. This is called dy-
namic loading. References that cause a class to be dynami-
cally loaded include object instance creation and static mem-
ber (class method or field) access. Such accesses are called
first-use references, since they cause a non-local class file to
be transferred for dynamic loading.’ Dynamic loading causes
a delay in execution each time a class file load request is is-
sued, since the thread triggering the load stalls until the class
has been loaded, verified, resolved, and initialized. Hence,
users experience these transfer delays intermittently during
execution as well as upon program invocation.

In this paper we concentrate on techniques to reduce these
intermittent delays caused by class file loading. We intro-
duce class file splitting to reduce the number of bytes that
must transfer in order to continue execution and class file
prefetching to enable file transfer to occur concurrently with
program execution. Both optimizations decrease transfer de-
lay in mobile Java programs.

2.1 Java Verification

Verification in Java is a security mechanism used to ensure
that a program is structurally correct, does not violate its
stack limits, implements correct data type semantics, and re-
spects information hiding assertions in the form of pub1 ic
and private variable qualifiers. To reduce the complex-
ity of these tasks, the verifier requires that each class file be
present at the execution site in its entirety before the class
is verified and executed for the first time. Verification may
require additional classes to be loaded (without regard to
whether or not they are executed) in order to check for secu-
rity violations across class boundaries. We refer to this pro-
cess as verified transfer. Verification is performed on each
untrusted class in the class-loader prior to the first use of the
class; this additional processing increases the delay in exe-
cution imposed by dynamic loading.

In contrast, verification can be turned off using the
-noverify runtime flag if all classes are trusted. We refer
to this option as trusted transfer. In this work, we focus on
verified transfer but include the resulting performance using
trusted transfer with our optimizations. For our results using
verification, we modeled the verification mechanism in JDK
1.2. We clarify this process here with two small examples.

Java guarantees that types are used consistently during ex-
ecution, i.e., each assignment of a variable is consistent with
its defined type. If a code body contains variables with non-
primitive types for which assignments are inconsistent, the
verifier must check each class file used in the assignments.
For example, in Figure 1, class X must be transferred and
verified at program invocation. The class, however, contains
a variable of class Zsuper, called varZ. This variable may
be assigned an instance of class Z or of class ZSuper de-
pending on the value of j. In order to verify class X, the
verifier must transfer both class ZSuper and class Z in or-
der to perform the necessary consistency checks on variable
varZ.

Verification also requires loading and verification of an en-
tire superclass chain in order to verify that a subclass (a class
that extends another) is correct. For example, in the above
scenario, when class z is loaded, verification requires that
its ancestors, class files Zsuper and Zsupersuper, are
loaded and verified.

Another example is shown in Figure 2. In this case, class
file A will be transferred and verified at program invoca-
tion. Class file B will only transfer when it is first used (new
B ()), since all uses of varB consistently use the same type,
class B, throughout the code in class file A. Class file C will
also be transferred on its first-use; it transfers when the con-
structor, B () , is executed. Each class in this example is
transferred and verified on first use. Notice also that class A
contains methods that are executed conditionally. For exam-
ple, error () will only be executed if an error occurs. De-
spite this conditional execution, the method error () must

277

public class X (
public static void main(String args[l) (

ZSuper varZ = null;
int j = Integer.parseInt(args[01);

if (j > 10) {
varZ = new ZO;

) else if Cj > 5) 1
varZ = new ZSuperO;

1

if (j > 5) {
int i = varZ.meth();
System.err.println("answer: ((+ i);

1
I

1

class z extends ZSuper 1
public int methO {

return 15;
)

1

class ZSuper extends ZSuperSuper (
public int metho {

return 10;
1

1

class ZSuperSuper 1
public int methO {

return 5;
,I

1

Figure 1: First Java example to demonstrate class file transfer and its interaction with verification when using superclasses.

class A (
public B varB;

A() I...)

ma;;;) ({
;

varB = new B();
. . .

1

foo 0 (...)

mumble() {...I

error0 (...)

class B (
public C varC;
public int varl;
private int var2;
private int var3;
protected int varl;

BO {
varl = 0;
var3 = 0;
varC = new CO;

I

bar0 t
varl = var2"varl;
varC.foobar();

1

class C (

co I...)

foobar() I...}

. . .
1

. . .
1

Figure 2: Second Java example to demonstrate class file transfer and its interaction with verification. This example will be used
in the remainder of the paper.

still be transferred as part of class A. We will use this second
example throughout the remainder of our paper.

The first example above indicates that verification may re-
quire many additional class files to be transferred for verifi-
cation whether or not they are used during execution. The
second example requires entire class files to transfer even
though some fields or methods may never be used. These
cases commonly occur in Java programs and thus motivate us
to investigate optimizations that reduce the amount of code
and data that must transfer in order to continue execution
(thereby’reducing transfer delay). We focus on optimizations
that do not require modification to the Java Virtual Machine.
In the next section, we examine class file splitting.

3 Splitting Java Class Files

Java class file splitting was recently proposed by Chilimbi,
et. al., in [l] to improve memory performance. The goal of
their research was to split infrequently used fields of a class
into a separate class. When a split class is allocated, the im-
portant fields are located next to each other in memory space
and in the cache for better performance. Separating fields in
class files according to the predicted usage patterns improves
data memory locality in the same manner as procedure split-
ting improves code memory performance [111.

The goal of our class file splitting is different than this
prior approach, since we are optimizing to reduce transfer
delay and not to improve memory performance ‘. With our
techniques, a class is split into two: a hot class containing
used fields and methods; and a cold class containing never or

lImprovedmemoryperformancemaybeaside affectofoursplittingbut
weleavethis analysis to future work.

278

rarely used fields and methods. We create a reference in the
hot class through which the cold class members are accessed.
If a cold member is used, the use triggers the loading and
verification of the cold class on demand. If the cold mem-
bers are not used, they will not be transfered, which reduces
transfer delay. In contrast, the class file splitting by Chilimbi
et. al. [l] always transfers and loads cold class files.

3.1 Splitting Algorithm

Class file splitting occurs once Java programs have been
compiled from source into bytecode. The splitting algo-
rithm relies on profile information of field and method usage
counts. With the profile information as input, a static byte-
code tool performs the splitting. For this paper, we classify a
field or method as cold if it is not used at all during profiling.
In addition, we only perform splitting when it is beneficial
to do so, e.g., when the total size of cold fields and methods
is greater than the overhead for creating a cold class. The
minimum number of bytes to represent an empty class file
is approximately 200 bytes. In this section, we explain the
primary steps for class file splitting using Figure 3 to exem-
plify the algorithm and to expose the potential benefits of our
approach. The steps are:

1. Create execution profiles for multiple inputs and iden-
tify classes to split

2. Construct cold class files for each class selected for
splitting

3. Move unused fields and methods from original (hot)
class to cold class

4. Create references from hot class to cold class and vice
versa

5. Update variable usages in hot and cold class code to
access relocated fields/methods via the new reference

The original code, shown in Figure 3(a), contains class A
with a field reference to class B, and class B that references
class C in its constructor. The first step of the algorithm pro-
files the use patterns of fields and methods during execution.
Classes containing unused fields and methods are appended
to a list of classes to be split. In the example, the profile de-
termines that mumble () and error () in class A are rarely
used, as well as method bar () in class B. Both class A and
class B are added to the list of classes to split.

The next step of the algorithm, using the list as input, splits
class A into class A and class ColdSA. A similar split is done
for class B into class B and class Cold$B. The constant pool,
method table, and field table entries are constructed for the
cold classes, with any other necessary class file information.
All cold code and data is then inserted into each cold class in
the third step of the algorithm.

Next, a field cldRef is added to both original classes;
this field holds a direct reference to the respective cold class.
This field enables access to the cold class from within each
hot class. In addition, the cold classes have a field hotRef,
which holds a reference to the hot class for the reverse ac-
cess. In the hot class, cldRef is assigned an instance of
the cold class when one of the cold fields or methods is ac-
cessed for the first time. Upon each reference to cold fields
and methods a check is added to determine if the cold object
pointed to by cldRef has been instantiated. A new instance
of the cold class will only be created during execution if one
does not already exist. When the cold class is instantiated,
the constructor of the cold class initializes hotRe f to refer-
ence the hot class.

We emphasize that this new cold class reference is not cre-
ated in the constructor of the respective hot class. If cold
class instantiation is performed in the constructor, transfer of
the cold class would be triggered prematurely (prior to the
actual first use of the class), negating any benefit from split-
ting. Instead, we delay transfer of cold class files until first
use (if it ever occurs). For example, in Figure 3(b), Cold$A
will only be transferred if either methods mumble () or
error () are executed. Likewise, Cold$B will only be
transferred if method bar () is invoked.

In the final step of the algorithm, we modify the code sec-
tions of both the hot and the cold class. For each access to
a cold method or field in the hot class, we modify the code
so that the access is performed through the cold class ref-
erence. The same is done for the accesses to hot fields by
the cold class. At this point the field and method access flags
are modified as necessary to enable package access to private
and protected members between the hot and cold classes. For
example, originally class B contained a private qualifier for
var2. Since class Cold$B must be able to access var2,
the permissions on the variable are changed to package ac-
cess (public to the package). We address the security impli-
cations of this decision below.

In the example, our splitting algorithm also finds that the
reference to class C, varC, in class B is only used in proce-
dure bar () , which was marked and split into the cold class.
Our compiler analysis discovers this, and moves varC to the
cold class as shown in Figure 3(b).

3.2 Maintaining Privacy When Class File
Splitting

As described above, a hot class must contain a reference to
the cold class so that cold members can be accessed. The
members of the hot class must be able to access the cold
members as if they were local to the hot class. Likewise the
object instance of the cold class must be able to reference all
fields and methods in the hot class according to the semantics
defined by the original, unmodified application.

279

class A (
public B varB;

A0 (...I

main0 (:
foo 0;
varB = new BO;

. .
1

foo 0 I...)

mumble0 I...)

error0 {...I

. . .
J

class B (
public C varC;
public int varl;
private int var2;
private int var3:
protected int varl;

BO {
varl = 0;
var3 = 0;
varC = new CO;

1

bar0 I
varl = var2*var4;
varC.foobar();

)
. . .

1

class C I
co {...I
foobar0 I...)
. . .

1

I

(a) Original Classes

class A {
public B varB;
g;;vTte yld$A cldRef = null;

. . .

mai..;) (;

varB = new BO;
?

mumble0 {
if (cldRef == null) {
, cldRef = new Cold$A(this);

~ldRef.mumbleO; ,
LrrorO {

if (cldRef == null){
cldRef = new Cold$A(this);

I
&Ref.errorO;

1

class B (
;gyT,"e t;;dg,yldRef = null;

int var2I
private int var3;

int varl;

BO (
varl = 0;
var3 = 0;

1

bar0 t
if (cldRef == null) (

cldRef = new Cold$B(this);

&Ref.barO:
1
. . .

1

class C (
co {...l
foobar0 I...)
. .

1

(b) Class Files after Class File Splitting

Figure 3: Class file splitting example.

The problem with this constraint is that if a class member
is defined as private, it is only accessible by methods within
the class itself. If a member is defined as protected, only
descendents (subclasses) of this class can access the mem-
ber. To retain the semantics of the original program during
splitting, hot class members must be able to access cold class
members and vice versa.

In our implementation, we change all cross referenced
(cold members used by hot and vice versa) private and pro-
tected members to package access. This is accomplished by
removing the private and protected access flags for these field
variables as shown in Figure 3 for var2 and var4. Package
access means that members are public to all of the routines
in the package, but not visible outside the package.

As previously stated, we apply our Java class file splitting
optimization after compilation using a binary modification

class ColdSA (

private A hotRef;

Cold$A(A ref) (
hotRef = ref;

I

mumble0 1
. . .

I
error0 {

. . .
1

class Cold$B {

public C varC;
private B hotB;

Cold$B(B ref) {
hotB = ref;
varC = new CO;

I

bar0 1
hotB.varl = hotB.var2*hotB.var4;
varC.foobarO;

1
- . .

1

tool called BIT [9]. The original application has been com-
piled cleanly and is without access violations before splitting
is performed. Therefore, changing the access of private or
protected fields to package access happens after the compiler
has performed its necessary type checking.

If package access is used during splitting, then splitting
does not provide complete security, and may not be suit-
able for all class files in an application. For a secure ap-
plication, we propose that the bytecode optimizer perform-
ing the splitting be given a list of classes for which split-
ting is disallowed. These are classes with private/protected
fields that must remain private/protected for security reasons.
The developer can then specify the classes for which splitting
should not be used.

280

4 Prefetching Java Class Files

In this section, we introduce class file prefetching as an
optimization that is complementary to class file splitting.
Prefetching class files masks the transfer delay by overlap-
ping transfer with computation, i.e., class files are transferred
over the network while the program is executing. In the opti-
mal case, this overlap can eliminate the transfer delay a user
experiences. Effective prefetching requires (1) a policy for
determining at what point during program execution each
load request should be made so that overlap is maximized,
and (2) a mechanism for triggering the class file load to per-
form the prefetch.

Figure 4 shows the benefit of prefetching, for the prior
code example in Figure 2. The first class to be transferred is
class A, and execution starts with the main routine. While
executing main, a prefetch request initiates the loading of
class 8. We insert a prefetch request for class B, since it is
needed when the first-use for class B is executed at the new
B () instruction in main. If class A executes long enough
prior to this first reference to class B, the statement new
B () will execute without waiting on the transfer of B. On
the other hand, if there are not enough useful compute cy-
cles to hide class B's transfer (that is, the time to transfer
class B is greater than the number of cycles executed prior
to A's instantiation of B), then the program must wait for the
transfer of class B to complete before performing the exe-
cution of new B () . In either case, prefetching reduces the
transfer delay since without prefetching execution stalls for
the full amount of time necessary to transfer class B.

4.1 Overview of Prefetching Algorithm

The prefetch algorithm contains five main steps:

1. Build basic block control flow graph

2. Find first-use references

3. Find cycle in which each basic block is first executed

4. Estimate transfer time for each class

5. Insert a prefetch request for each first-use reference

First, the algorithm builds a basic block control flow graph
for the entire program, with interprocedural edges between
the basic blocks at call and return sites. The next step of the
algorithm finds all first-use references to class files. These
are the first references that cause a class file to be transferred
if it has not already. When a first-use reference to class B is
found, the algorithm constructs a list of the class files needed
in order to perform verification on class B; class B's first-use
reference causes these class files to be transferred.

The third step of the algorithm estimates the time at which
each basic block in the program is first executed (measured

in cycles since the start of the program). This start time de-
termines the order in which first-use references are processed
and the position at which to place a prefetch request for each
class. Next we estimate the number of cycles required to
transfer each class file. We use this figure to determine how
early in the CFG the prefetches need to be placed in order to
mask the entire transfer delay. The final step of the algorithm
processes the first-use references in the predicted order of ex-
ecution and inserts prefetch requests for the class file being
referenced. The following sections discuss all of these steps
in more detail.

4.2 Finding First-Use References

We use program analysis to find each point in the program
wherefirst-use references are made. A first-use reference is
any reference to a class that causes the class file to be loaded.
Therefore, for a class B reference to be considered a first-use
reference, there must exist an execution path from the main
routine to that reference, such that there are no other refer-
ences to class B along that path. All of the first-use references
to class files are found using a modified depth-first search of
the basic block control flow graph (CFG). A description of
this algorithm can be found in [6].

4.3 First-Execution Ordering and Cycle Time
of First-Use References

Once all first-use references are found we need to order them
so that prefetch requests can be appropriately inserted. Ide-
ally, we should prioritize according to the order in which the
references will be encountered during execution. This first-
execution order is the sequential ordering of basic blocks
(and thus first-use references in those basic blocks) based on
the first time each basic block is first executed. Since we can-
not predict program execution exactly, we need to estimate
the cycle in which each basic block is first executed. To do
this we use profiles to determine this first-execution order of
references and cycle of execution.

In this paper we used profiles to determine the order of
processing the first-use references. During a profile run, we
keep track of the order of procedure invocations and basic
block executions during program execution for a particular
input. The order of the first-use references during the profile
run determines the order in which we place prefetches for
the Java class files. We also keep track of which class files
are transferred using the JDK 1.2 verification mechanism,
when executing each first-use reference. This provides us
with a list of additional class files that need to be transferred
to perform verification. All procedures and basic blocks that
are not executed are given an invocation ordering and first
cycle of execution based on a traversal of the control flow
graph using the same static heuristics in 161.

281

Inserted

Prefetch

Request

CLASS A

pilLi-1

AThread.prefet&(Cla B

CLASS B

Execution Conti

Without Stalling

Figure 4: The benefit of Java class file prefetching. A prefetch to class file B is inserted into class file A. The full transfer delay
will be masked if class file B has fully transferred by the time the command stew B() is executed.

Profiles can accurately determine the relative distance in
cycles between basic blocks. When calculating the first cycle
of execution for each basic block, we use the average num-
ber of cycles per bytecode instruction (CPB) over the entire
program execution to estimate the number of cycles required
to execute the bytecodes in each basic block.

4.4 Prefetch Insertion Policy

In the fifth step of the prefetching algorithm, we determine
the basic blocks in which to place the prefetch requests.
Prefetch requests must be made early enough so that the
transfer delay is overlapped. Finding the optimal place to
insert a prefetch can be difficult. The two (possibly conflict-
ing) goals of prefetch request placement are to (1) prefetch
as early as possible to eliminate or reduce the delay when
the actual reference is made, and (2) ensure that the prefetch
is not put on a path which causes the prefetch to be per-
formed too early. If a prefetch starts too early, it may inter-
fere with classes that are needed earlier than the class being
prefetched. In this case, the prefetch can introduce delays by
using up available network bandwidth.

Figure 5 is the algorithm we use for this step. We clar-
ify it with the example shown in Figure 6. In the example,
we wish to insert two prefetches for the first-use references
to class B and class C. Figure 6 shows part of a basic block
control flow graph for a procedure in class A. Nodes are ba-
sic blocks with the name of the basic block inside each node.
The dark edges represent the first traversal through this CFG
during execution, and the lighter dashed edges represent a
later traversal through the CFG. The first part of the prefetch

placement algorithm determines the first-execution cycle and
order of the basic blocks. This indicates that a prefetch for
the first-use reference (in basic block Z) to class B needs to
be inserted before the prefetch for first-use reference (in ba-
sic block Q) to class C. We process the classes in increasing
order of first use reference.

The algorithm inserts a prefetch for each first-use refer-
ence (twice in our example). When placing a prefetch, the
basic block variable bb is initially set to the basic block
containing the first-use reference (node Z for class B, and
node Q for class C), and cycles-left is initialized to
the estimated number of cycles required to transfer the class
files. The algorithm examines each parent of the current ba-
sic block to determine prefetch placement for each path in
the CFG. The estimated number of cycles each basic block
executes is subtracted from cycles-left during exami-
nation. The algorithm follows the edge from bb to each
parent in the CFG until either (1) cycles-left is re-
duced to zero, or (2) the parent lies on a prefetched or already
encountered path. Otherwise, we keep searching up the CFG
and recursively call this routine on the parent of the current
basic block.

For class B in our example, the algorithm starts at basic
block U and performs a reverse traversal of the CFG process-
ing the parents of each basic block. At each basic block en-
countered, cyc 1 es-1 e f t is decremented by the estimated
cycle time of the current basic block. In our example, enough
cycles execute during the loop between X and T to reduce
cycles -1 e f t to zero. Since the relative distance in cycles
between the first-use reference of B and basic block W is

282

Procedure: find-bb-to-addprefetch(
Reference ref,BasicBlock bb, int cyclesleft)

/* ref - a pointer to the first use reference for a class file X */
I* bb - the current basic block to try and place the prefetch *I
/* cycles-left - number of cycles left to mask when prefetching

the class files for this first-use */

bb.processed = TRUE;
bb.prefetch-path-name = ref.classfilename;

/* get one of the parent basic blocks of bb in the CFG */
parent = bb.parentlist;

while (parent ! = NULL) {

if (arent.processed) { F. * d parent basic block already is on a
then insert the prefetch at the start o F

ath for a prefetch
basic block bb */

insert-prefetch-at-start-bb(ref, bb);

} eke {
/* parent is not yet on a prefetch path, so calculate the

number of cycles that can be masked if the prefetch was
placed in the arent basic block */

cycles-between- t b = parent.first-cycle - bb.first-cycle;

if (cycles-between-bb >= cyclesleft) {
/* all the transfer cycles wrl! be masked by glacing the

prefetch at the end of baste block parent /
insert-prefetch-at-end-bb(ref,parent);
parent.processed = TRUE;
parent.prefetch-pathname = ref.class-filename;

} else {
if (cycles-between-bb > 0) {

/* need to keep traversing up the CFG, because the
first time parent is executed is not far enough
in the past to mask all the transfer delay */

find-bb-toadd-prefetch(
ref, parent, cycles-left - cycles-between-bb);

arent was first executed *after* the current bb,
prefetch up this parent’s path */

I* process next parent of basic block bb *I

1
parent = parent.next

Figure 6: Prefetch Insertion Example. Nodes represent ba-
sic blocks in the control flow graph. Solid edges represent
the basic blocks executed on the first traversal through the
CFG. The dashed edges represent a later traversal through
the CFG. Class B is first referenced in basic block 2, and
class C is first referenced in basic block Q.

large enough to mask the transfer of B, the prefetch to class
B is inserted immediately before basic block X.

The algorithm stops searching up a path when the basic
block being processed is already on a prefetched path. A
prefetched path is one that contains a prefetch request for
a previously processed class. Placing a new prefetch on
a prefetched path consumes available bandwidth for more
important class prefetches and imposes unnecessary trans-
fer delay on the class. When a prefetch is inserted onto a
path, all of the basic blocks on that path are marked with the
class file name of the prefetch and a processed flag. These
flags are used to prevent later first-use prefetches from being
placed on the same path. In our example, once the prefetch
for first-use reference B is inserted, the algorithm continues
with the next first-use reference for class C. When inserting
the prefetch to class C, the prefetch does not propagate up
into basic block U, since basic block U is on the prefetch
path for B. Therefore, the prefetch to class C is inserted right
before entering basic block V.

Figure 5: Algorithm for finding the basic block to place the
prefetch.

4.5 Prefetch Implementation

Once we determine all points in the program at which
prefetch requests should be made, we insert prefetch instruc-
tions into the original application. For prefetching to be cost
effective, the prefetch mechanism must have low-overhead
and must not cause the main thread of execution to stall and

283

BIT

Jack

Bytecode Instrumentation Tool: Each basic block in the input program
is instrumented to report its class and method name
Soec Benchmark: Java uarser generator based on the Purdue Cornoiler Construction Tool Set

JavaC Spec Java Compiler Benchmark: javac-Java source to bytecode compiler
JavaCup LALR Parser Generator: A parser is created to parse simple mathematics expressions
Jess Spec Expert System Shell Benchmark: Computes solutions to rule based puzzles
JLex Lexical Analyzer Generator
MPegAudio Audio File Decompression Benchmark: Conforms to the IS0 MPEG

Layer-3 audio specification

Table 1: Description of Benchmarks Used.

wait for the file being prefetched to transfer. To prefetch a
class file B, we use the standard Java loadClass method.

When adding prefetching to a package, we create one sep-
arate prefetch thread to perform the loading and resolution of
each class file. An inserted prefetch request then inserts a list
of class files onto a prefetch queue, which the prefetch thread
consumes. The prefetch thread prevents the main threads
of execution from stalling unnecessarily while the class file
is transferring. Therefore, this solution allows computation
(performed by one or more of the main threads) and class
transfer (initiated by the prefetch thread) to occur simultane-
ously.

Most existing JVMs (including the Sun JDK VM) only
block the requesting thread when loading a class, and allow
multiple threads to load classes concurrently. Therefore, our
approach does not require any changes to these VMs. If the
prefetch of a class is successful, the JVM will have loaded
the class based on the request issued by the prefetch thread
before any main thread needs that class. Ahernatively, if a
main thread of execution runs out of useful work before a
required class is fully loaded, the JVM will automatically
block this thread until the class becomes available.

A prefetch inserted for a first-use of class B may actually
prefetch several class files as needed to perform verification
for class B as described in section 2.1. Before each prefetch
request, a flag test is used to determine if a class is local or
has already been fetched. If the flag indicates that no prefetch
is necessary than the overhead of our prefetch mechanism is
equivalent to a compare and branch instruction.

5 Methodology

We implemented our prefetching and splitting optimizations
using a bytecode modification tool called BIT [8,9]. BIT en-
ables elements of Java class files, such as bytecode instruc-
tions, basic blocks, and procedures, to be queried and manip-
ulated. We use this tool for the simulation of our prefetching
and splitting optimizations and to model their efficacy for
programs in a mobile environment.

For our Java implementation, we use JDK version 1.2 to
model the verification used in our simulations. We executed
each benchmark with the -verbose -verify flags to
force verification to occur as well as output to be generated
about each file as it is loaded by the Java Virtual Machine.
In addition, each benchmark was first instrumented to re-
port each time a class is first used by the program. From
the parsed output, we are able to determine the point in the
program execution at which each file is loaded by the Java
Virtual Machine. This provides us with a list of verification
dependencies for each class file used. The list is then used
by our simulator to determine when files must transfer.

Each benchmark simulation is executed on a 500 MHz
DEC Alpha 21164 running operating system OSF V4.0. We
present results for the Java programs described in Table 1.
The programs listed in Table 1 are from the SPECjvm98
suite and other programs that have been used in previous
studies to evaluate tools such as Java compilers, decompilers,
profilers, bytecode to binary, and bytecode to source transla-
tors [9, 121.

Table 2 shows the general statistics for the benchmarks.
For each benchmark we use two inputs, a larger input (Ref)
used for all of the results and a smaller input (Test) used to
construct our across-input profiles. The static data shown
in Table 2 apply to both inputs, and the dynamic data apply
to the Ref input, with the dynamic data for the Test input
shown in parenthesis. The second column shows the number
of class files in each program’s package. The next column
shows the total size of all the class files in kilobytes. The
fourth column shows the number of bytecode instructions
executed for each program. The next two columns show the
number and percentage of static bytecode instructions exe-
cuted. The final column shows the number of class files used
during execution for each input.

Our simulation results are in terms of the number of pro-
cessor cycles needed to execute a program, taking into ac-
count the cycles for transferring the program (“delay” or
.“lost” cycles in which no computation is performed) and the
actual computation cycles. To establish a baseline for the
number of cycles required to accomplish each computation

284

I II I 1 Dvnamic Instrs 1 Static Instructions 1 Total
Size 1; Thousands In Thousands Classes

Program Classes in KB Ref (Test) Total % Executed Executed
BIT 48 107 47163 (7814) 11 65 32 (32)
Jack 56 162 27448 (13729) 19 80 46 W)
Javac 176 638 24689 (518) 41 0 132 (59)
JavaCup 35 143 381 (278)

I-

17 72 31 (31)
Jess 151 425 15147 (3438) 18 43 135 (133)
JLex 20 109 28346 (12128) 12 68 18 (18)
MPegAudio 55 168 121998 (115514) 34 88 28 (28) _)

Table 2: Benchmark Statistics. The columns represent the program name, the number of class files, the number of bytes for
ail class files, the number of instructions executed for a given input, the number of static instructions in the programs and the
percent of these executed, and the number of classes executed for a given input,

Program
BIT
Jack
Javac
JavaCup
Jess
JLex
MPegAudio
Average

Verified Transfer: Time in Secor
Exe Time w/ No Tl L
Transfer Delay Invocation

0.848 0.044
7.849 0.323
5.710 0.008
0.965 0.434
0.711 0.007

12.999 0.007
0.080 0.013
4.166 0.119

; for Execution and Trar er Delay
iem
Overall
26.065
35.627

169.097
38.905

107.879
29.184
45.259
64.514

Table 3: Verified Transfer. The first column shows the execution time in seconds for each program if there was no transfer
delay. The time (in seconds) is then shown for invocation latency and overall transfer delay for both the Tl link and the 28.8
baud modem.

(without any transfer delay) we first timed each program on a
500 MHz Alpha 21164 processor to calculate the average cy-
cles per bytecode (CPB) for each program. We then use the

average CPB to model the number of cycles it takes to exe-
cute each bytecode instruction when performing our simula-
tions. To evaluate the performance of our prefetching model,
we assume transfer of programs over a Tl link (lMb/sec)
and a 28.8 KbitsZsec modem. The Tl link takes approxi-
mately 3,815 cycles to transfer each byte, and the modem
link takes 134,698 cycles per byte.

6 Results for Verified Transfer

To evaluate splitting and prefetching, we measure improve-
ment in terms of the percentage of transfer delay eliminated.
As mentioned before, the transfer delay is the total number of
cycles an application spends waiting for class files to trans-
fer during execution. Performance results are shown for only
running the Ref input in Table 2. The results with DifSin the
name use the Test input to perform profiling, and the results
with Same use the Ref input to perform profiling.

Table 3 shows the time in seconds to execute each of the
programs locally and remotely using verification. The first
column shows the time for local execution. Invocation shows
the time in seconds required to start executing the program.

The invocation delay includes the time to transfer the first
class file and to pe@orm its verification. Therefore, this time
includes the transfer of all of the class files needed to verify
the first class file. The Overall columns shows the total trans-
fer delay of the original program in seconds. The remainder
of our performance results are shown in terms of the percent
of invocation latency and overall transfer cycles that can be
eliminated due to class file splitting and prefetching.

Figure 7 shows the reduction in invocation latency due to
class file splitting, where larger percentages are better. The
results show a 9% reduction in invocation latency on aver-
age, and that similar results are found between inputs.

Figure 8 shows the reduction in overall transfer latency for
the 28.8 modem due to prefetching alone, class file splitting
alone, and class file prefetching and splitting combined. Fig-
ure 9 provides the same scenarios for the Tl Link. These
results show that prefetching by itself can provide a 6% re-
duction in transfer delay for the Tl link. Class file splitting
on the other hand eliminated 25% of the overall transfer de-
lay. Combining class file splitting with prefetching results
in a 30% reduction in transfer delay. The Diff results for
BIT show that the difference in the method usage patterns
between the two inputs reduces the benefit of our algorithm
by half. For the other benchmarks, methods that are unused
by one input are most likely unused by other inputs for the
benchmarks and inputs we studied.

285

Jack Javac JavaCup Jess JLex MPegAudio Average

Figure 7: Percent reduction in Invocation latency after class file splitting when verification is used.

35 50 W Prefetch Diff

k-0 Et Split Diff
0 Prefetch Same

RI Split Same

BIT Jack Javac JavaCup Jess JLex MPegAudio Average

Figure 8: Percent of reduction in overall transfer delay for the 28.8 baud modem when verification is used.

0 y 40
.- L
.g ; 30

iz 20
C$
Et 10
$5
‘jp
n 0

BIT Jack Javac JavaCup Jess JLex MPegAudio Average

Figure 9: Percent reduction in overall transfer delay for the Tl link verification is used.

286

Trusted Transfer: Time in Seconds for Execution and Transfer Delay
Exe Time w/ No Tl Link 28.8 Modem

Program Transfer Delay Invocation Overall Invocation Overall
BIT 0.848 0.044 0.742 1.537 26.065
Jack 7.849 0.014 0.998 0.490 35.056
Javac 5.710 0.008 4.357 0.293 153.092
JavaCup 0.965 0.133 1.102 4.667 38.720
Jess 0.711 0.007 3.070 0.249 107.879
nRX 12.999 0.007 0.831 0.260 29.184
MPegAudio 0.080 0.013 1.288 0.442 45.259
Average 4.166 0.032 1.770 1.134 62.179

Table 4: Trusted Transfer. The first column shows the execution time in seconds for each program if there was no transfer
delay. The time (in seconds) is then shown for invocation latency and overall transfer delay for both the Tl link and the 28.8
baud modem.

For the programs we examined, the transfer delay using
the modem link (Table 3) dwarfs the execution time of the
programs. Prefetching improves performance when there are
enough execution cycles between uses of class files available
to overlap communication. This is the case for Jack, where
prefetching alone does better than splitting alone for the Tl
link results. For Jack, a large amount of computation oc-
curs early in the program after only a small number of class
files have been loaded, providing us with time to prefetch
class files used later in the execution. However, most of the
programs we studied initialize most of their classes/objects
early in the program reducing the number of cycles available
for overlap with transfer. We address this issue further in
Section 8.

7 Trusted Transfer

In a trusted environment the Java interpreter can skip part of
the verification phase. If either the Java class file is com-
piled without verification or the interpreter is run with veri-
fication turned off (the -noverify option), then the inter-
preter skips the type verification phase when loading a class
file. We call this model of transfer trusted transfer.

In this mode, additional class files will not be transferred
for verification. Only those class files used during execution
will transfer upon each first use, thereby reducing the trans-
fer delay imposed by those classes with verification depen-
dencies. Using trusted transfer can also reduce the startup
time for a Java program in which the first class file requires
additional files to be transferred when verification is turned
on.

We implemented a trusted version of our prefetching opti-
mization, to model execution without verification. The same
algorithm is used as described in section 4. The only differ-
ence is that when we process a first-use for a class, we insert
a prefetch to load only that class. In comparison, the verified
transfer algorithm prefetches all the class files needed to ver-

ify a class. The splitting algorithm used for trusted transfer
is identical to that used for verified transfer.

7.1 Results for Trusted l’hnsfer

Table 4 shows the time in seconds to execute each of the
programs with and without transfer delay for trusted trans-
fer. This table is the same as Table 3, but without verifica-
tion. The difference in time between these two tables shows
the reduction in transfer delay when class files are trusted as
opposed to requiring verification.

Figure 10 shows the percent reduction in invocation la-
tency (larger percentages are better) due to class file splitting
for trusted transfer. The Diff bars show results when the Test
input is used to profile the program and the Ref input is used
to gather the simulation results. The Same results show the
performance with the same input (Ref’) is used to both pro-
file and gather the simulation results. The startup latency is
much smaller with trusted transfer and splitting provides a
largereduction forBITandJavaCup.

Figure 11 shows the reduction in overall transfer latency
for the 28.8 modem due to prefetching by itself, class file
splitting, and class file splitting with prefetching; Figure 12
shows the same results for the Tl link. Prefetching provides
6% improvement over splitting for the Tl link results shown
in Table 4, since the overall transfer delay does not dwarf the
execution time of the program. In general, splitting provides
the largest gain in performance, but prefetching provides a
large reduction in transfer delay for JavaCup, Jack, and
JLex.

In the following section, we examine the potential of an-
other compiler optimization to improve the impact of our
prefetching optimization.

287

0
BIT Jack Javac JavaCup Jess JLex MPegAudio Average

Figure 10: Percent reduction in Invocation latency after class file splitting for trusted transfer.

H Prefetch Diff 0 Prefetch Same

BIT Jack Javac JavaCup Jess JLex MPegAudio Average

Figure 11: Percent reduction in overall transfer delay for the 28.8 batid modem for trusted transfer.

Y !lio
-5
F 40

5 30
E $ 20

s g IO 2 I- 0
BIT Jack Javac JavaCup Jess JLex MPegAudio Average

Figure 12: Percent reduction in overall transfer delay for the Tl link for trusted transfer.

288

Jack 36 319947.6 41.0
Javac 45 33445.1 3176.0
JavaCup 19 23575.3 4300.6
Jess 128 20526.7 17.6
JLex 15 210502.1 4.0
MPegAudio 1 1 21 1 192527.2 1 91776.6
Average 11 41 1 117507.9 1 14341.61

Program
BIT

Count
25

Average Median
Distance Distance
2203 1.4 1075.5

Table 5: Initialization to First-Use Distance. The first column contains the number of class files for which there is a distance
in cycles between the initialization and the first-use of the class. Column two presents this distance as an average over all such
classes in the application. The final column is the median value of the distance. The distance numbers are given in thousands
of instructions.

8 Distance Between Initialization and
First Real Use

Many times in Java, as well as in C++, constructors initialize
all fields of the instance being created. In Java, this initializa-
tion may cause other class files to be transferred and loaded,
even though the class members may not be used (except for
initialization) until thousands or millions of cycles later in
the program’s execution. This was shown in Figure 2, where
an instance of class C is allocated in class B’s constructor,
even though variable varC might not be used at all or re-
main unused for many cycles. Optimizations may be able
to reduce transfer delay by moving the instructions for the
creation of instances of as-yet-unloaded classes to immedi-
ately before the first real use of the class. This postponement
would avoid stalling the main thread of execution until it is
absolutely necessary. It also potentially improves the effi-
cacy of our prefetching optimization by making additional
cycles available for overlap of transfer with execution.

To determine the potential of techniques that address the
problem of premature initialization in Java, we measured the
number of cycles executed between the initialization of a
class file and the first real use of the class file. Initialization,
in this context, is object allocation and creation; including as-
signment of initial values as necessary to fields. In Java, this
is indicated by the execution of the <ini t> routine upon
object creation. TheJirst real use of an object is the instruc-
tion in the user’s application that first manipulates the object,
i.e., the first time a field is read or written, or the first time a
method is invoked. In Figure 2, the first real use of class c by’
class B is the statement varC . foobar () in method bar,
even though field varC is initialized in B’s constructor.

The results are shown in Table 5. The first column shows
the number of class files that are initialized but are not used
right away. The second column is the average number of
cycles in thousands between initialization and the first real
use for these classes. The last column is the median number
of cycles (in thousands) between initialization and the first

real use for these classes. The results show that for many
class files, millions of cycles occur between class initializa-
tion and the first real use; approximately 50% of the class
files in Javacup and BIT exhibit this behavior. The data as-
sumes that classes incur no transfer delay, i.e., this distance
is not caused by network delays. We are currently looking at
compiler optimizations to move the initialization to the point
in the program of first real use, and to use this in combination
with prefetching to reduce transfer delay.

9 Related Work

Prior work has offered solutions to reducing the effect of
transfer delay. The first is non-strict execution: a JVM modi-
fication that enables execution at the method level. This tech-
nique masks network latency by overlapping execution with
computation. The second research area is code compres-
sion. Code compression reduces the amount of data trans-
ferred thereby avoiding network latency. Lastly there has
been some recent effort to reduce the startup delay for appli-
cations.

9.1 Non-Strict Execution

In recent work [6], we proposed reducing the cost of trans-
fer delays by overlapping class file transfer with execution at
the procedure level using non-strict execution. The existing
JVM imposes strict semantics. Each class file must transfer
to completion prior to being executed. With non-strict exe-
cution, the unit of transfer is the procedure (method). When
transferring a class file, execution is allowed to continue
when the required method and data has finished transferring.
To enable this, we added procedure delimiters and runtime
checks to the JVM to identify when each procedure and its
code has transferred. For short running programs, non-strict
execution enables substantial performance improvements in
both overall execution time (25% to 40% on average) and

289

program startup time (3 1% to 56% on average) 161. Trans-
fer schedules were used to indicate when to start transferring
each class file to best overlap transfer with execution.

The use of the non-strict execution model can provide per-
formance benefits, but it requires major modifications to the
current design of the Java Virtual Machine (JVM). The modi-
fications range from adding procedure delimiters to the wire-
transfer format to modifying JVM verification to perform in-
cremental verification at the procedure level.

Our splitting and prefetching work in this paper is very
different. Prefetching represents a pull model of fetching
class files to eliminate transfer delay, whereas non-strict ex-
ecution uses a push model with a transfer schedule [6]. In
addition, prefetching and splitting require no modification of
the JVM or the server and work in existing Java execution
environments.

9.2 Code Compression

For class file prefetching, we advocate maximizing the over-
lap between execution and network transfer as a way to re-
duce the overhead introduced by network delay (i.e., latency
tolerance). An alternative and complementary approach is
to reduce the quantity of data transferred with compression
(i.e., latency avoidance). Several approaches to compression
have been proposed to reduce network delay in mobile exe-
cution and we discuss them here.

Pugh describes a wire format that reduces a collection of
individually compressed class files 50% to 20% the size of
compressed jar files on average [133. The wire format uses
the gzip compression utility but incorporates a very efficient
and compact representation of class file information. In ad-
dition, it organizes the files into a single file that makes the
gzip utility more effective. He determines when sharing can
be performed within an application so that additional redun-
dant information is not transferred.

Other compression techniques have been created for
machine-specific binary representations. In one such project,
Ernst et. al. [3] describe an executable representation called
BFUSC that is comparable in size to gzipped x86 executables
and can be interpreted without decompression. The group
describes a second format, which they call the wire-format,
that compresses the size of executables by almost a factor of
five (gzip typically reduces the code size by a factor of two
to three). Both of these approaches are directed at reducing
the size of the actual code, and do not attempt to compress
the associated data.

Other attempts to reduce the size of program code include
work at Acorn Computers to dramatically reduce the size of
a 4.3 BSD port so that it fits on small personal computer
systems [151. A major focus of this work is to use code com-
pression to reduce disk utilization and transfers. Fraser and
Proebsting also explore instruction set designs for code com-
pression, where the “instruction set” is organized as a tree

and is generated on a per-program basis [5]. Fraser has re-
cently extended this work to incorporate machine learning
techniques to automate decisions about instruction encoding
in [4]. In other recent work, Lefurgy et. al. [lo] describe
a code compression method based on replacing common in-
struction sequences with “codewords” that are then recon-
structed into the original instructions by the hardware in the
decode stage.

Our optimizations are distinct from, and complementary
to, code compression. Code compression can significantly
reduce the transfer delay by decreasing the number of bits
that need to transfer; it however, does not eliminate all of
the delay. In contrast, class file prefetching can mask addi-
tional delay when the prefetch can be performed far enough
in advance. Using compression, splitting, and prefetching to-
gether will allow prefetching to more easily mask the trans-
fer delay, especially the transfer delay imposed by invoca-
tion. Examining the performance of using compression with
prefetching and splitting is part of our future research.

9.3 Reducing Invocation Time

In research concurrent and independent of ours, Sirer
et.al. [141 described an optimization for reducing the startup
time for mobile programs executed on thin client and hyper-
text systems. The optimization repartitions Java class files to
enable more effective utilization of the available bandwidth
during transfer of such programs to remote sites. Methods
distinguished as unused by profile information are split out to
form new cold class files declared with Java’s final modi-
fier to enable optimization. In this study, the authors concen-
trate on improving the startup time of a mobile program. The
optimization is quite similar to our splitting technique in that
we reduce the invocation latency as well as the overall exe-
cution time. The results they achieve are similar to ours. Our
technique differs in that we distinguish between verified and
trusted transfer. In addition, we include class file prefetching
to improve the overall performance of mobile programs by
overlapping the transfer with useful work.

Other recent work by Lee etal. [7], decreases program in-
vocation time by packing application code pages more effec-
tively for remote execution. The optimization extends Non-
Strict execution (described above) to architecture-specific bi-
naries of Web and desktop applications. Programs are re-
ordered into contiguous blocks according to predicted use
of procedures (using profiles). Programs are divided into a
global data file and page-size files containing code. When a
web engine executes a remote binary, it loads each file on de-
mand and is able to continue execution once each page-size
file arrives. The technique, when combined with demand
paging, can reduce startup latency for the benchmarks tested
by 45% to 58%. In contrast, our work concentrates on Java
applications and applets and does not require a special exe-
cution engine to achieve performance. In addition, they do

290

not provide prefetching in their approach, so no overlap of
computation and communication is performed and execution
is stalled while each page is dynamically loaded.

10 Conclusions

The increased interest in the Internet as a computational
paradigm has sparked demands for the immediate perfor-
mance improvement of mobile applications. The perfor-
mance of mobile programs depend both on the time to trans-
fer the program for remote execution as well as the actual
execution at the remote site. Since the reduction rate in
network latencies has not paralleled that of processor cycle
time, mechanisms for masking and eliminating transfer de-
lays are important for the viability and performance of Inter-
net applications.

In this work, we presented an optimization to split Java
class files to reduce the size of class files transferred. In addi-
tion, we presented a latency-hiding technique that prefetches
a Java class file prior to the first reference to the class by an
application. Prefetching enables overlap of execution cycles
with the transfer of class files. The results showed that class
file splitting reduces the invocation latency by 10%. The
overall transfer delay is reduced by 25% on average when us-
ing class file splitting. Prefetching provided its largest gains
when using a Tl Link. Using prefetching with splitting for
this configuration resulted in an average reduction in overall
transfer delay of 30%.

The implementation of splitting and prefetching we
present does not require any modification of the JVM. The
optimizations use compile-time analysis and heuristics with
profiles to guide selection of classes to split and placement of
prefetch requests. Once the class files are modified, Java ap-
plications execute with improved performance and the same
semantics of the original execution without optimization.

Acknowledgements

We would like to thank Jim Larus, Emin Sirer, and the
anonymous reviewers for providing useful comments. This
work was funded in part by NSF CAREER grants No. CCR-
9733278 and No. CCR-9624458, and a research grant from
Compaq Computer Corporation.

References

[l] T. Chilimbi, B. Davidson, and J. Lams. Cache-conscious
structure/class field reorganization techniques for c and Java.
In Proceedings of the ACM SIGPLAN ‘99 Conference on Pro-
gramming Language Design and Implementation, May 1999.

[2] W. Doherty and R. Kelisky. Managing VM/CMS systems
for user effectiveness. IBM Systems Journal, pages 143-163,
1979.

[3] J. Ernst, W. Evans, C. Fraser, S. Lucco, and T. Proebsting.
Code compression. In Proceedings of the SIGPUN’97 Con-
ference on Programming Language Design and Implementa-

[41

VI

161

171

@I

[91

[lOI

1111

WI

[I31

U41

WI

tion, pages 358-365, Las Vegas, NV, June 1997.

C. Fraser. Automatic inference of models for statistical code
compression. In Proceedings of the SIGPUN’99 Conference
on Programming Language Design and Implementation, May
1999.

C. Fraser and T. Proebsting. Custom instruction sets for code
compression. Available at:
http://www.cs.arizona.edufpeopleJtodd/papers/pldi2.ps, Oc-
tober 1995.

C. Krintz, 3. Calder, H. Lee, and B. Zom. Overlapping exe-
cution with transfer using non-strict execution for mobile pro-
grams. In Eigth International Conference on Architectural
Support for Programming Languages and Operating Systems,
October 1998.

D. Lee, J. Baer, B. Bershad, and T. Anderson. Reducing
startup latency in web and desktop applications. In Windows
NT Symposium, July 1999.

H. Lee. BIT: Bytecode instrumenting tool. Master’s thesis,
University of Colorado, Boulder, Department of Computer
Science, University of Colorado, Boulder, CO, June 1997.

H. Lee and B. Zom. BIT: A tool for instrumenting Java byte-
codes. In Proceedings of the 1997 USENIX Symposium on
Internet Technologies and Systems (USITS97), pages 73-82,
Monterey, CA, December 1997. USENIX Association.

C. Lefurgy, P, Bird, 1. Chen, and T. Mudge. Improving
code density using compression techniques. In 30th Inter-
national Symposium on Microarchitecture, Research Triangle
Park, NC, December 1997.

K. Pettis and R. Hansen. Profile guided code positioning.
Proceedings of the ACM SIGPLAN ‘90 Conference on Pro-
gramming Language Design and Implementation, 25(6): 16--
27, June 1990.

T. Proebsting, G. Townsend, P Bridges, J. Hartman, T. New-
sham, and S. Watterson. Toba: Java for applications a way
ahead of time (wat) compiler. In Proceedings of the Third
Conference on Object-Oriented Technologies and Systems,
1997.
W. Pugh. Compressing Java class files. In Proceedings of the
SIGPLAN’99 Conference on Programming Language Design
and Implementation, May 1999.

E. Sirer, A. Gregory, and B. Bershad. A piactical approach for
improving startup latency in Java applications. In Workshop
on Compiler Supportfor Systems Software, May 1999.

A. Wolfe and A. Chanin. Executing compressed programs on
an embedded RISC architecture. In 25th International Sym-
posium on Microarchitecture, pages 81-91, 1992.

291

