
QPRED: Using Quantile Predictions to Improve Power Usage for Private Clouds

Rich Wolski
Computer Science Department

University of California, Santa Barbara
Santa Barbara, CA, USA
Email: rich@cs.ucsb.edu

John Brevik
Department of Mathematics

California State University at Long Beach
Long Beach, CA, USA

Email: John.Brevik@csulb.edu

Abstract—In this paper we describe a new, efficient pre-
dictive scheduling methodology for implementing computing
infrastructure power savings using private clouds. Our ap-
proach, termed “QPRED,” estimates the quantiles on the
distribution of future machine usage so that unneeded machines
may be powered down to save power. A cloud administrator
sets a bound on the probability that all available machines
will be powered down when a cloud request arrives. This
target probability is the basis of a Service Level Agreement
between the cloud administrator and all cloud users covering
start-up delay resulting from power savings. Our results,
validated using activity traces from several private clouds used
in commercial production, indicate that QPRED successfully
reduces power consumption substantially while maintaining the
SLAs specified by the cloud administrator.

Keywords-cloud power optimization, cloud workload, perfor-
mance evaluation

I. INTRODUCTION

Cloud computing, in the form of “Infrastructure as a
Service” (IaaS), has emerged as a new methodology for
organizations to manage digital assets and the physical
computing infrastructure that hosts them. Public clouds, such
as Amazon’s AWS [1] and Google Cloud Platform [2], rent
virtual machines (VMs), network connectivity, and storage
via web services APIs over the Internet. Customers of public
clouds use an e-commerce-style interface to obtain these
rentals in a way that is fully automated and self-service.

On the other hand, private clouds built using technologies
such as Eucalyptus [3], [4], OpenStack [5], and Cloud-
Stack [6] operate in private datacenters, each under the
control of an organization’s Information Technology (IT)
staff. They offer the same automated self-service interfaces
as public clouds but to employees under a quota-controlled
charge-back accounting system rather than to billed cus-
tomers. Thus private clouds are a way of using e-commerce
technologies to automate and streamline IT management of
private datacenters through e-commerce-style self-service.

In this paper, we describe a scheduling methodology that
is designed to save electrical power in cloud settings using
on-line, non-parametric predictions of future demand. Cloud
operators must be able to offer Service Level Agreements

This work was supported, in part, by NSF grants ACI-1541215, CNS-
0905237, CNS-1218808, and ACI-0751315.

(SLAs) to their users so that these users can reason about
how applications will behave when they are hosted, just
as they do when these applications are run on physical
infrastructure. Our approach allows the cloud administrator
to make a probabilistic guarantee regarding the impact that
power saving will have on user experience.

Clouds, by their very nature, obscure the specific infras-
tructure characteristics from the infrastructure users in the
form of abstractions. Users reason about cloud use in terms
of SLAs associated with its abstractions and experience the
cloud in terms of delivered performance. Powering off idle
servers carries with it the potential for a user-perceived delay
during virtual machine (VM) start-up if a physical server
needs to be powered on before the VM can start. Deskside-
and laptop-class hardware can “hibernate,” thereby minimiz-
ing this delay, but full hibernation support is not available
for many commercial-grade servers. As a result, unused
machines must be fully powered down to save power. With
large memories and disk subsystems, the power-up delay
associated server class machines can be significant (tens of
minutes in some cases). Thus our methodology attempts to
save as much power as possible subject to a probabilistic
SLA that the cloud administrator sets with respect to the
additional power-up delay a user might experience which is
advertised to her or his users.

The key to our approach is the ability to make a con-
servative prediction of an arbitrary quantile from the distri-
bution of machines that will be needed a short time into
the future. Similar to [7], [8], we use a new fast, non-
parametric prediction algorithm to estimate quantile bounds
from measurement samples over fixed time epochs. Our
methodology monitors cloud activity and uses the quantile
prediction to estimate how many “hot spares” will be needed
to host VMs that will be requested in the next time epoch.
All other machines in the cloud not in use are then powered
down.

The methodology is novel in that it does not rely on the
a priori assumption that the “random” quantities of interest
obey well-behaved and simple statistical distributions (e.g.,
that process lifetimes are exponentially distributed). Com-
parable approaches [9], [10] employ sophisticated statistical
models for queue wait times, workload, etc. based on distri-



butional assumptions that enable computational tractability.
When a request to start a VM is initiated, the methodology

first looks for a machine that is already powered up to host
the VM. If no such machine is available, the scheduler will
delay the VM request pending the power up of a dormant
machine and the power-up time is experienced by the user
as additional start-up delay. The quantile estimate allows
the cloud administrator to set the maximum probability that
no machine will be powered up and ready when a user
request for service is initiated. The result is that the user
experience is perturbed by a predictable fraction of the total
request population. That is, the probability of finding no
machine powered-up and available (defined by the quantile
the administrator chooses) determines the maximum fraction
of total user requests that will experience some form of
delay. We term these quantile-predicting schedulers QPRED
schedulers.

We validate the overall QPRED scheduling methodology
using Eucalyptus [3], [4], an open-source platform for im-
plementing private clouds in production datacenters and with
various product workloads gathered from commercial “big
data” hosting companies.

Eucalyptus is used commercially, and several of its com-
mercial customers have made traces of their respective
workloads available (under the condition of anonymity) for
the purposes of evaluating our approach 1. Thus the results
we present herein depict effects that are observed from
“real-world” production private cloud settings. In addition to
understanding the degree to which power management could
benefit this category of cloud usage, we are also interested
in an algorithm that can be made to work “on-line” as part
of the resource scheduling implementation. QPRED uses a
short history of single-valued measurements (typically no
more than 1000) that it must consult in sorted order and
an incrementally updated running calculation of the average
cloud request interarrival time. Thus its implementation can
be made highly efficient with respect to computational and
required memory state.

Our results indicate that the QPRED methodology can
provide the cloud administrator with the abilty to offer
a start-up SLA while also resulting in substantial power
savings. Thus, while the problem of power management in
data centers has been extensively studied [11], [9], [12],
[13], [14] our work is the first to detail the efficacy of an
efficient on-line statistical prediction strategy that provides
a start-up SLA using production commercial private cloud
workloads. It is unique in its use of an algorithm that can
be implemented with minimal computational and storage
requirements.

II. VM SCHEDULING AND POWER CONSUMPTION

Because clouds must be able to manage workloads scal-
ably, their scheduling algorithms must be efficient. Euca-

1The traces are available from http://www.cs.ucsb.edu/∼rich/workload/

lyptus, for example, only includes schedulers (Greedy and
Round-robin) that assign a VM to a node at the time the re-
quest for the VM arrives at the cloud from the user. Further,
because VM migration can require substantial intra-cloud
bandwidth, each scheduler makes only a single placement
decision for a VM at the beginning of a VM’s lifetime.

Using only the ability to power machines on and off,
the problem of optimizing power usage in this scheduling
scenario without denying access (i.e., turning away VM
requests when machines are available but powered down)
can be solved trivially: All machines are powered down until
they are needed to run a VM. When a VM request arrives
at the scheduler, the scheduler attempts to assign it to a
node 2 that is already powered up. If no node is located, the
scheduler chooses a node that is powered down, sends it a
power-up signal, and launches the VM on the node once it
has been successfully powered on. If the scheduler uses a
“greedy” strategy – one that “fills” nodes with incoming VM
requests before selecting a new node – this methodology
is optimal with respect to power consumption under the
constraints that

• each VM is considered once
• the scheduler makes only one placement decision for

each VM at the time the VM start request arrives, and
• no additional information beyond what is needed to de-

termine the capacity required for each VM is provided.
The scheduling complexity of such schedulers is O(n ∗m)
for n VMs and m machines (each of m machines might need
to be considered for each of n VMs worst case). Because
n >> m in most cloud settings, we consider this to be O(n)
complexity.

Because this strategy waits to power up nodes until they
are needed, VMs that cannot be started until a node has
been fully powered on must also wait; this added delay
is experienced by users until their VMs become available
for use. Machine power-up times, particularly for server-
class machines, can be lengthy: Depending on the machine’s
configuration, it may require as much as 30 minutes to go
from a powered-off state to one in which a VM can be
started. Moreover, Eucalyptus makes heavy use of caching
and copy-on-write techniques to reduce VM launch times. A
cached 10-gigabyte VM can be launched in under a minute
if the local disks are server class. Thus a scheduling strategy
that tries to optimize power usage may also introduce VM
start-up overhead that is dramatic and may be unacceptable
for some applications or users.

We formulate the problem of moderating power con-
sumption in terms of a tradeoff between the probability
that a VM (and its user) will experience a start-up delay
and the power saved by having machines powered down.

2We will use the terms “machine” and “node” interchangeably to refer
to a machine configured into a cloud that is running a hypervisor and can
host a VM that is started and terminated by a user making requests to the
cloud.



Well-written cloud applications are typically prepared for
variation in VM start-up delay as long as the delays occur
relatively infrequently. Thus our approach is to allow the
cloud administrator to set a maximum target probability
for any given VM to experience a start-up delay because
a machine needs to be powered up. The scheduler must
then keep enough “extra” machines (“hot spares”) powered
on so that the probability that a VM start request will
arrive while no powered-on machines are available is at
or below the target. At the same time, the scheduler must
maintain O(n) complexity to avoid introducing unacceptable
or unpredictable overhead if the load scales.

Notice that this formulation of the scheduling problem
prioritizes user experience in the form of minimized VM
start-up delay over power savings. That is, we investigate
schedulers that are designed to implement a Service Level
Agreement (SLA) in terms of VM start-up times between
the cloud’s users and the cloud’s operators while at the same
time minimizing power usage subject to the SLA. This user-
centric approach based on SLAs is typical for private cloud
deployments.

Notice also that simply keeping a single or a fixed number
of hot spares may not provide enough additional powered-
on capacity if VM arrivals fill and exceed the capacity of
the spares before a new spare can be fully powered on. As
an example, suppose that the scheduler attempts to keep a
single hot spare available, that each node in a cloud can
host 8 single-core VMs, and that the machine power-up
delay is 600 seconds. If 16 single-core requests arrive in
a 600-second interval and there is only one hot spare, at
least one VM will experience a start-up delay. Further, the
cloud administrator cannot predict nor control the rate at
which VMs (and users) experience start-up delay with this
approach, making it difficult to provide a reliable SLA.

Thus, we investigate O(n) scheduling methods that make
a prediction of the number of additional machines that must
be powered on at any moment so that the maximum target
probability specified by the cloud administrator (i.e., the
SLA) for VM start-up delay will not be exceeded.

The Prediction Method
The goal is to use the information provided by the history

of node occupancy to predict the number of nodes that will
be required going forward and therefore the number of hot
spares to keep on hand. To this end, we poll the system at
regular intervals. To be sure, over a particular time interval
there will likely be points in time when there are fewer or
more nodes occupied; the number with which we will be
concerned is the maximum number of nodes simultaneously
occupied during the time interval.

In principle, the time-series information used for this
inference will consist of an (N + 1)-by-(N + 1) matrix of
transition probabilities (for a cloud with N nodes) between
all possible numbers, including 0, of occupied nodes. This

formulation defines a large number of transition probabil-
ities, even for a modest-sized cloud, to estimate from a
sample of any reasonable size. (On the other hand, the
majority of the transitions are vanishingly improbable, as
the transitions themselves will tend to be small, provided
that the sampling interval is short enough, so the number of
useful probabilities to be estimated, while still substantial,
is not extremely large.)

In the data sets we have studied, the transition probabil-
ities are almost completely captured by the probabilities of
differences from one interval to the next. That is, for exam-
ple, given that there are 4 occupied nodes in one interval, the
probability of going to 6 at the next interval is very nearly
identical to the probability of going from 1 to 3 or 5 to 7.
This behavior allows us to use a much simpler time series,
namely that of the difference in the number of occupied
nodes from one time step to the next. This simplification,
in fact, removes the time-series character from the problem
entirely: If we would like to be, say, 95% certain that we
will have enough hot spares to handle the incoming jobs for
the next time interval, we need only look at some estimate
(in the statistical sense) for the 0.95 quantile of the set of
differences. (In this work, for quantile inference, we simply
use the percentile from the current measurement history
although it is possible to use confidence upper bound, easily
calculated from the order statistic via binomial means [7],
[8], as a conservative estimate if necessary.) As a simple
example, if we have inferred that this quantile is less than
+2, this reflects the belief that there is at least a 95%
probability that the number of nodes required at the next
time step will be no more than two greater than the number
needed in the current time step. Thus, keeping two hot spares
on hand will supply us with the desired confidence of having
enough resources ready to handle incoming work without
delay.

We implement the QPRED prediction methodology using
a doubly linked list and a red-black tree, each holding the
maximum difference in busy machines recorded over an
epoch. Figure 1 depicts these data structures graphically.
At the end of each epoch, the latest (youngest) difference
of maxima (henceforth called simply the “difference”) is
added to one end of the linked list and the oldest difference
is removed. Similarly, the youngest difference is added to
the red-black tree (so that differences are kept sorted) and
the one that is removed is also deleted from the tree.

The history size (number of entries) is a fixed parameter
supplied during configuration of a predictor. The total time
covered by the history is the product of the number of entries
in the history size and the epoch length.

To compute a prediction of the qth quantile of the differ-
ences with a history size of H , the methodology extracts the
entry corresponding to the (1 − q) · H largest value in the
red-black tree. For example, if H = 100, and q = 0.95, then
the 5th largest value in the red-black tree is the prediction



diff	   diff	   diff	   diff	   diff	   diff	   diff	   diff	  

Red-‐Black	  
Tree	  

diff	   diff	   diff	   diff	   diff	   diff	   diff	   diff	  

History	  size	  

youngest	  oldest	  

smallest	   largest	  

Figure 1. Data structures implementing QPRED. Doubly linked list holds
fixed history of maximum differences. Red-black tree sorts current history
of maximum differences.

of the 0.95 quantile of the current history of differences.
This implementation is simple and speed efficient. Each

addition and deletion to the linked list is constant time, the
addition and deletion of a value to the red-black tree is
O(log(H)), and the scan for the quantile takes (1− q) ·H
operations (if q < 0.5, and (1−q)·H operations if q >= 0.5
since the sorted list can either be scanned from largest to
smallest or vice versa. The implementation is also space
efficient since only the current list of historical entries is
needed 3. Note that the original QBETS prediction method-
ology on which this method is based includes a change-
point detector that implements history trimming in the event
that conditions change suddenly. Such an enhancement is
possible for QPRED at the cost of additional predictor state
and complexity. As our results indicate, however, for the
current state of the practice with production private clouds
represented in the traces we have examined, the additional
complexity associated with change-point detection appears
to be unwarranted.

In addition, we wish to concern ourselves not with the
fraction of time intervals in which there is a delay but rather
the fraction of instances themselves that experience a time
delay at startup.

For example, suppose that the polling interval is 1000 sec-
onds but that the instance interarrival time is 5000 seconds
and that we want to maintain a probability of less than 0.05
of startup delay. In this case, we only want a delay once in
every 20 · 5000 = 100 000 seconds, so that only a fraction
of 0.01 of the intervals should see a delay. Thus we must
infer for the 0.99 quantile to account for the possibility of
empty intervals.

More generally, suppose given a history of maximum
occupancy numbers, a historic mean interarrival time I ,
polling interval t, and desired fraction α of jobs delayed

3The implementation actually maintains both the time-sorted linked list
and the value-sorted red-black tree to improve speed efficiency. However,
for the purposes of state exchange in the event of a fail-over, only the
time-sorted list is needed – the red-black tree is reconstructed.

at startup. At the beginning of each time interval:
• Calculate the target fraction β = min

(
α, t

I · α
)

of time
intervals experiencing a delay.

• Find a suitable upper bound M on the (1−β) quantile
for the differences of the maximum occupancies.

• Adjust the number of hot spares so that there are a total
M machines powered on above the maximum number
occupied at any point in the previous time interval.

Note that the methodology adjusts the number of powered
up or down at the beginning of each time interval. In
practice, if the number of hot spares is inadequate during
any interval, Eucalyptus will immediately initiate the power-
up of a machine, but the VM requests that arrive before the
machine is operational will be delayed.

Scheduling Methodologies
In Section III we compare the performance of four dif-

ferent scheduling methodologies. The performance of each
methodology is characterized by the fraction of total power
it uses, and the fraction of VMs that experience a start-up
delay. The methodologies are defined as follows.

• Power-greedy – This scheduler results in the optimal
power usage by a feasible implementation that consid-
ers VMs in the order they arrive (an O(n) algorithm)
without regard for the number of VMs that will ex-
perience a start-up delay. It uses a “greedy” selection
strategy that always chooses a node that is in use and
has sufficient capacity over one that is “empty” when
making a VM assignment decision. It also keeps nodes
powered off until they are needed and powers them off
immediately when they become idle.

• QPRED-greedy – This scheduler makes greedy as-
signment decisions like Power-greedy, but it uses the
quantile predictions to anticipate how many idle “hot
spares” are needed at any moment to ensure that the
probability a VM will be delayed falls below a target
threshold.

• Power-RR – This algorithm is similar to Power-greedy
in that it considers VMs in arrival order and only makes
a single placement decision for each VM. However,
instead of attempting to keep nodes “empty” so that
they can be powered down, it uses a round-robin rule
to assign VMs to nodes that are powered up when each
VM arrives.

• QPRED-RR – Like Power-RR, this scheduling algo-
rithm chooses among powered-up nodes when a VM
arrives and must be assigned to a node. However, it
uses the quantile predictions to anticipate the number
of idle “hot spares” need to be available to meet a target
VM delay probability threshold.

We modify the Eucalyptus VM scheduler to send a
message to each node instructing it to put itself to sleep
whenever that machine becomes idle. When the scheduler
needs to start a VM, it consults an internal record of node



state and selects a node that currently has the capacity to
run the VM and is also currently powered on. If no node
is found, it then considers nodes that are in the process
of “waking up” and chooses one that will have sufficient
capacity once it is fully power on. Finally, if no “on” or
“waking” nodes are located, it selects a node that is powered
off, sends that node a wake-on-lan message [15] thereby
putting it in the “waking” state, assigns the VM to the
node, and waits until the node is fully powered up before
starting it and any other VMs that are waiting. To keep VMs
“packed” onto powered-up nodes, Power-greedy gives the
nodes an arbitrary order and then always considers nodes in
this order when making a placement decision. Power-RR is
an alternative to Power-greedy that goes through each class
of node (“on,” “waking,” and “off” in round-robin order (i.e.
the scheduler starts with the next node in order when a new
placement decision is needed).

The QPRED schedulers predict a bound on the maximum
number of machines that will be required to start all VMs
in a fixed time epoch such that the probability of a VM
incurring a power-up delay is no greater than a fixed target
probability supplied to the algorithm. QPRED-greedy uses
the same greedy approach to making placement decisions as
does Power-greedy, but it also attempts to power on enough
hot spares (based on the quantile prediction) to control the
probability that a future VM start will experience a start-
up delay. Thus, compared to Power-greedy, QPRED-greedy
trades additional speculative power usage for the ability to
provide a statistically valid SLA. Alternatively, QPRED-
RR is comparable to Power-RR except that it too uses
the quantile prediction to forecast the number of additional
nodes that must be powered up to meet a specific target
SLA.

The difference between the greedy and round-robin ver-
sions of these schedulers is the degree to which the exploit
multi-tenancy. The greedy schedulers will attempt to use a
few machines as possible, thereby increasing the degree to
which VMs will share nodes. As a result, they are more
power-efficient than their round-robin counterparts; however,
because of the greater potential sharing, VMs under a greedy
schedule may experience greater I/O interference.

III. EXPERIMENTAL RESULTS

The results presented in this section are generated from
a faster-than-real time simulator that is able to “replay”
each data set described in Table I using different scheduling
methodologies. The simulator is able to replay each dataset
as it was gathered (i.e. using the scheduling information in
the data set). It also implements the different scheduling
policies (both based on QPRED and otherwise), reports
machine statistics such as node utilization, core utilization,
power consumption, and the fraction of VMs that were re-
quired to wait for a node to power-up (also termed the “miss
fraction” since the VM “missed” having an available node

powered-on to start it). Because the results are simulated
using datasets from machines that were not instrumented
for power usage when the datasets were gathered, power
consumption is reported as a fraction of the total power that
was used. That is, the simulator records the ratio of time
each node is powered-up using power-saving scheduler to
the time that all node were powered up. We explain this
method of measuring power consumption in greater detail
in the next section.

We present data from six separate commercial private
clouds – four implemented using Eucalyptus and two from
“big data” companies that operate their own internal clouds
using unspecified technology. All six clouds support the
commercial activity of their operators (they are not operated
for, e.g., evaluation or investigative purposes). As a result,
the supplies of these traces have made them available in
anonymized form only to preserve both customer privacy
and competetive market advantages.

The first data set (DS1) is taken from an organization
with several large-scale software development efforts. While
the private cloud is used for some company-wide service
hosting, its primary use is to support software testing and
development. DS1 captures private cloud VM activity that
combines software development with service hosting, with
an emphasis on development.

The second data set (DS2) is taken from an IT organiza-
tion that “sells” time on a re-charge basis to other organiza-
tional units in its umbrella company. The accounting charges
translate to operating budget for the following fiscal year,
making the economic incentives similar to those driving a
public cloud. Thus the usage of this cloud is not known (i.e.,
the cloud does not have a specific purpose other than to host
the workloads of its paying customers). The function of the
umbrella company, however, makes it likely that much of
the activity is generated by software development.

The third data set (DS3) is taken from a private cloud
used to allow business partners to integrate their respective
software products with the products made by the company
operating the cloud. It also supports user and customer trials
of the company’s software products. Finally, these partners
often use the cloud for demonstration or sales purposes. Thus
the workload is a mixture of software development with on-
demand hosting activities.

The fourth data set (DS4) comes from a cloud used ex-
clusively for software development and testing at a software
start-up company that uses an Agile [16] engineering pro-
cess. The Agile process makes heavy use of testing during
development so the workload in this data set represents a
mixture of user-controlled VMs and VMs that are launched
and terminated by an automatic testing system.

Finally, the fifth and sixth data sets (DS5 and DS6, respec-
tively) are traces from “big data” open source frameworks
(e.g. Apache YARN, Hadoop, and Apache Spark) that are
operated by two moderate sized companies for their cus-



tomers. Unlike DS1 through DS4, these traces contain only
the framework parallelism and not the cloud provisioning
information. Thus we must infer the cloud workload in terms
of number of instances and cloud node count. We assume
that each framework task requires a single core, and that the
core count per machine is 8 in all cases. The node count is
set to the maximum makespan (i.e. the maximum number
of simultaneously executing tasks) shown over the duration
of each trace.

While potentially optimistic in terms of the amount of
parallelism that organization was able to exploit, these traces
capture the scale, churn, and correlations that a cloud expe-
riences when it is used to host “batch” big-data workloads.
Many more VMs are instantiated and terminate simultane-
ously than in a cloud used for a variety of workloads (like
those represented by DS1 through DS4). Further, DS5 and
DS6 record longer time periods with a great deal more
instance churn. DS5 contains approximately 41, 800, 000
instances and DS6 contains 5, 100, 000 instances respec-
tively (compared to 1, 000 to 10, 000 for traces DS1 throigh
DS4). In addition, the provider of the DS6 trace chose to
obfuscate the specific dates recorde in the trace. The instance
interarrival and lifetime durations are accurate as is the total
duration of the trace (approximately 2.5 months) but the
cloud operator chose to anonymize the precise starting time
for the trace.

Table I provides summary descriptions of the cloud de-
ployments from which we have gathered these data sets.
All six data sets span several months of continuous usage.
During the monitoring periods, many of the hosting organi-
zations upgraded their respective clouds, in one case multiple
times.

We begin by detailing the tradeoff between overall power
usage and the probability that a VM’s start will be delayed
while a machine is powering up to host it. We compare
Power-greedy, QPRED-greedy, Power-RR, and QPRED-RR
in terms of both power usage and VM delay fraction. In
what follows, we will use the term “miss fraction” inter-
changeably with the term “VM delay fraction” because from
the perspective of a scheduler (particularly the predictive
schedulers) a VM that experiences a VM start-up delay is
a “miss” with respect to finding a machine powered on and
ready to accept the VM.

Power Usage and VM Delay Fraction
Table II compares the performance of these four sched-

ulers using the data set described in Subsection ??. Each
boldfaced number in the table denotes the fraction of max-
imal power that the scheduling methodology used. That is,
the simulations compute the total number of node-seconds
used for each data set as a hardware-independent measure
of the power that would have been consumed in the absence
of power-aware scheduling. The boldfaced numbers are
the fraction of this maximal usage number for each data

set (thus, e.g., a lower fraction represents greater power
savings).

The italicized numbers show the fraction of VMs that
incurred a delay as a result of having to wait for a machine
to reach a fully powered on state. For this experiment, we
used a power-on interval of 600 seconds, taken to represent
a typical amount of time it takes a server-class machine to
start up, and a target delay probability of 0.05 for the SLA
given to the user. Thus, when the predictor is accurate, the
total fraction of VMs experiencing a delay for either QPRED
method should be less than or equal to 0.05.

As an example, consider the results for DS3 in Table II.
The boldfaced number in the second column (0.22) indicates
the fraction of total power used with all of the machines
powered up for the duration of the trace that Power-greedy
scheduler would have used to complete the workload. Put an-
other way, Power-greedy (which is the most power-efficient
of the schedulers we examine) would use 22% of the power
that was used by the system when it executed the workload
originally, with all of its machines on and fully powered.
At the same time, Power-greedy for DS3 generates a miss
fraction of 0.27 (italicized number in column 2), indicating
that 27% of the VMs would experience a start-up delay.
In sum, Power-greedy for DS3 would use just 22% of the
power that was used for the work load, but 27% of the user
requests would incur a delay while waiting for a machine to
power up.

In the third column for DS3, we show the power fraction
(boldfaced) and VM delay fraction (italics) for QPRED-
greedy. These data indicate that QPRED-greedy would have
used 37% of the total power used originally, but only 2%
of the VMs would have been delayed waiting for a machine
to power up. Thus, QPRED-greedy would have used 15%
more power (relative to the maximum) than Power-greedy
while maintaining the 0.05 target probability (since 0.02 is
less than 0.05) specified in the SLA.

Finally, in the fourth and fifth columns of the row for
DS3, we show the results for Power-RR and QPRED-RR
respectively. Power-RR uses 41% of the original power, but
60% of the VMs experience a start-up delay. Meanwhile,
QPRED-RR uses 59% of the original power (18% more
that Power-RR relatively speaking) while respecting the 0.05
miss fraction specified in the SLA (0.02 < 0.05).
Predictor Efficacy

The data in Table II used an SLA with a target VM
delay probability of 0.05 for all experiments. As described
in Section II, the predictor used in both QPRED schedulers
attempts to estimate the quantile of the distribution of the
maximum number of nodes occupied during each time epoch
corresponding to this target probability. Thus for a target
probability of 0.05, the quantile estimator attempts to choose
the number of nodes that correspond to the 0.95 quantile of
the distribution of the maximum node occupancies across
epochs. From the table, the predictor is correct for a 0.05



Data Set Nodes Cores/Node Time Period Description
DS1 13 24 Aug. 2012 to Oct. 2012 Large company with

50,000 to 100,000 employees
DS2 7 12 Aug. 2012 to Apr. 2013 Medium sized company with

2,000 to 5,000 employees
DS3 7 8 Aug. 2012 to May 2013 Small company with

50 to 100 employees
DS4 12 8 May 2013 to Sep. 2013 Start-up company with

5 to 10 employees
DS5 580 8 May 2015 to Feb. 2016 Open Source “Big Data” company with

50 to 100 employees
DS6 1169 8 2.5 months Internet marketing company with

(actual dates obfuscated) 150 to 200 employees

Table I
SUMMARY OF PRIVATE CLOUD DATASET CHARACTERISTICS

Data Set Power-greedy QPRED-greedy Power-RR QPRED-RR
DS1 0.56 0.08 0.62 0.02 0.92 0.06 0.87 0.00
DS2 0.33 0.45 0.51 0.05 0.76 0.20 0.83 0.01
DS3 0.22 0.27 0.37 0.02 0.41 0.60 0.59 0.02
DS4 0.35 0.46 0.56 0.04 0.43 0.67 0.67 0.01
DS5 0.40 0.61 0.60 0.01 0.93 0.18 0.98 0.00
DS6 0.48 0.80 0.69 0.02 0.97 0.07 0.98 0.01

Table II
COMPARISON OF SCHEDULER PERFORMANCE. BOLDFACED NUMBERS ARE FRACTION OF MAXIMAL POWER. ITALICIZED NUMBERS ARE FRACTION OF

VM’S DELAYED. QPRED TARGET DELAY FRACTION IS 0.05

VM delay probability since all of the observed delay frac-
tions are less than or equal to 0.05.

In Table III we show the VM delay fraction for QPRED-
greedy that results from parameterizing the predictor with
different target quantiles corresponding to different SLAs.

In each experiment, we use an epoch interval of 1000
seconds and a power-up delay of 600 seconds (the same as
for the results in Table II). In each column except the first
we show the fraction of original power usage in boldfaced
type and the miss fraction in italics for the target quantile
q shown in the first row. We underline the entries where
the observed VM delay fraction is greater than the target
quantile (i.e. an SLA violation) indicating that the predictor
failed to achieve a conservative bound.

As expected, the fraction of maximal power increases as
the target quantile decreases. That is, smaller the fraction of
VMs that can miss according to the SLA, the more power the
cloud must use to ensure that the SLA is met. For example,
for DS4, an SLA of 0.01 uses 65% of the original power.
If an SLA of 0.25 is chosen, the true miss fraction rises
to 0.11 but the cloud uses only 45% of the original power.
Thus the price of a 0.01 SLA guarantee versus a 0.25 SLA
guarantee is 20% in terms of power usage for DS4.

For all target quantiles except q = 0.01 for DS2 the
predictor’s bound on VM delay fraction holds, although it
appears quite conservative in many cases (e.g. the VM delay
fraction for DS1 is 0.07 for a target of 0.25). The predictor
misses outright with a miss fraction of 0.03 for DS2 with a
target quantile of q = 0.01, however. This failure illustrates
the effect that autocorrelation in the interarrival time series
can have on our methodology. Specifically, the DS2 data

set contains periods of time when few VM starts occur and
also short intervals when a large number of VMs arrive. The
prediction methodology does not take this “burstiness” into
account. Thus, when a burst of VMs occurs in the DS2 data
set, QPRED-greedy does not have enough machines ready
and idle to absorb the burst such that at most only 1% of
the VMs will experience a delay per the terms of the SLA.

To investigate the effect spin-up delay has on the results,
Table IV shows the VM delay fractions using QPRED-
greedy with a target quantile of 0.05 and different machine
spin-up delays. For this experiment, we show the results for
Power-greedy and vary the spin-up delay from 60 seconds to
1800 seconds while keeping the length of the time epoch and
the history length both at 1000 (as they were in the previous
experiments) and the target VM delay probability set at 0.05.
The miss fractions are shown in italics and fractions that
exceed the target SLA probability of 0.05 are underlined.
From this information, it is clear that miss fraction increases
with spin-up delay; however, the rate of increase is slow.

In [11] and [10], the authors report that the savings
benefits gained by powering down machines when they are
not needed can be overshadowed by the use of additional
“peak” power during the spin up phase. When a machine is
powered on, it may use more power (e.g., to accelerate disks
to operational speed) relative to its steady-state or idle-state
usage. The ratio of peak usage during start-up to steady-
state usage varies by machine manufacturer and model as
well as by configuration (e.g., the number and type of disks
attached). The authors of both works note that the additional
usage during power-up can be as much as 60% more than
steady-state.



Data q=0.01 q=0.05 q=0.10 q=0.15 q=0.20 q=0.25
DS1 0.68 0.01 0.62 0.02 0.58 0.03 0.57 0.04 0.55 0.07 0.55 0.07
DS2 0.53 0.03 0.51 0.05 0.52 0.05 0.47 0.08 0.46 0.11 0.45 0.15
DS3 0.45 0.01 0.37 0.02 0.36 0.03 0.35 0.03 0.34 0.04 0.32 0.05
DS4 0.65 0.01 0.56 0.04 0.52 0.04 0.49 0.06 0.47 0.07 0.45 0.11
DS5 0.68 0.01 0.58 0.01 0.56 0.01 0.53 0.01 0.51 0.01 0.50 0.01
DS6 0.80 0.01 0.69 0.02 0.63 0.04 0.60 0.06 0.58 0.09 0.56 0.10

Table III
POWER USAGE FRACTION IN BOLDFACE AND VM DELAY FRACTION IN
ITALICS FOR DIFFERENT TARGET QUANTILES USING QPRED-GREEDY.

Data 60s 90s 120s 300s 600s 900s 1200s 1800s
DS1 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02
DS2 0.02 0.02 0.02 0.04 0.05 0.06 0.05 0.06
DS3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
DS4 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04
DS5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
DS6 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03

Table IV
VM MISS FRACTION ONLY QPRED-GREEDY AND TARGET QUANTILE OF

0.05 AS A FUNCTION OF INCREASING VM SPIN-UP DELAYS.

In Table V we show the power savings for QPRED-
greedy over a range of peak-to-steady state ratios. For these
experiments, we use a target quantile of 0.05 and a spin-up
delay of 600 seconds. A ratio of 1.0 shows the case when
there is no difference between power consumption during
spin-up and steady-state. Thus column 2 of Table V (marked
as 1.0) corresponds to column 3 (marked as q = 0.05) of
Table III discussed previously. Even if the spin-up cost were
five times steady-state, the additional power usage is no more
than 1% with a spin-up time of 600 seconds.

For the general cloud workload traces, these results do not
contradict the previously published work in [11] and [10].
Rather, they indicate that with a target SLA quantile of 0.05
and production cloud workloads, QPRED-greedy does not
generate enough spin-up events for a large peak-to-steady
state ratio to have a substantial effect on power savings.

However for the big-data batch workload traces, where
machines starts and stops are highly correlated, the surge
power can be significant. Notice that QPRED correctly
predicts the need for additional machines (cf Table IV).
However because so many machines may be needed at one
time to service the batch workloads, the additional power
required for spin up can be significant when it is a large
multiple of the steady-state power consumption and the spin-
up time is long.

IV. RELATED WORK

Both because clouds aggregate usage and also because
they commoditize compute and storage capabilities, they are
especially well-suited for the implementation of automatic
power optimization. In [10], [9] and [17] the authors discuss
the efficacy of various power level formulations’ for data-
center-hosted processors. This work, like ours, involves the
application of Markov/time-series methods to the problem of
power management. In these papers the Markovian approach
appears in service of an M/M/k queuing model. Our work,
which focuses on clouds rather than data centers, also uses
a Markov-based approach to workload but in a much more
direct way: we use a fast algorithm to make sample-based
estimates of confidence bounds on transition probabilities
(indeed with some further simplifying hypotheses). While
their use of time series is in some sense more sophisticated
than ours, we have found that for our purposes nonpara-
metric and model-agnostic methods yield better results.

Additionally, our work examines the SLA that a cloud
must provide with respect to VM start-up delay; their work
(perhaps because it focuses on workloads in data centers,
where start-up delay is not typically subject to an SLA) does
not consider start-up delay guarantees.

In [18] the authors formulate the problem in terms of
multi-dimensional optimization and then explore a set of
heuristics for improving power usage. Our efforts focus on
predictive enhancements that augment cloud schedulers used
in production today.

The work in [14] investigates the power efficiency of
the same scheduling strategy that has been implemented
by Eucalyptus as the Power-greedy scheduler. In addition,
they explore the effects of additional “hot spares” (called
a “pool”) in this work. As described, our work prioritizes
user experience in the form of an SLA and uses an on-
line predictive methodology to predict how many hot spares
are needed. Because of the similarity in base-line schedulers
between OpenNebula [19] (the test platform for this work)
and Eucalyptus, however, our approach should be directly
applicable to their test environment.

In [20] and [21] the authors use a variety of statistical
techniques including time series analysis and clustering to
predict VM workloads from a virtualized data center that
is intended to be used as a private cloud. Their study uses
CPU utilization data gathered from each VM across a history
of time intervals to predict aggregate load in the next time
interval. Our work is similar in that we too discretize time
into epochs and use time series of measurements to make
a prediction for each epoch immediately before it begins.
However, our methods uses measurements of overall cloud
load rather than an aggregation of VM CPU utilization.
Further, our approach predicts quantiles as a way of imple-
menting user-facing SLAs whereas their method generates
point-value predictions.

V. CONCLUSION AND FUTURE WORK
This work shows that it is possible to use a simple,

computationally efficient prediction methodology based on
quantile estimation to improve cloud power usage while also
implementing an SLA governing machine virtual machine
start-up delay. The methodology predicts a conservative
bound on the number of machines that must be powered
on at any moment to ensure that the probability of having
to power up a machine (i.e., a miss) is at or below the target



Data Set 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
DS1 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62
DS2 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.52
DS3 0.37 0.37 0.37 0.38 0.38 0.38 0.38 0.38 0.38
DS4 0.55 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
DS5 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.68 0.69
DS6 0.69 0.70 0.71 0.71 0.72 0.73 0.73 0.74 0.75

Table V
VM POWER USAGE FRACTION FOR QPRED-GREEDY, TARGET QUANTILE OF 0.05, AND SPIN-UP DELAY OF 600 SECONDS AS A FUNCTION OF

INCREASING PEAK POWER RATIO DURING SPIN-UP.

set by the cloud administrator. We illustrate the efficacy of
the approach using VM activity traces gathered from four
enterprise private clouds that were in production use at the
time of their instrumentation. Our results show that QPRED
(which is non-parametric and both computationally and
space efficient) generates substantial power savings under
settable probabilistic constraints on the tradeoff between
power savings and degraded user experience.

REFERENCES

[1] J. Murty, Programming Amazon Web Services: S3, EC2, SQS,
FPS, and SimpleDB. O’Reilly Media, Inc., 2009.

[2] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm,
“What’s inside the cloud? an architectural map of the cloud
landscape,” in Proceedings of the 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing. IEEE
Computer Society, 2009, pp. 23–31.

[3] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The eucalyptus open-source
cloud-computing system,” in Cluster Computing and the Grid,
2009. CCGRID’09. 9th IEEE/ACM International Symposium
on. IEEE, 2009, pp. 124–131.

[4] Eucalyptus Systems Inc. (2013) http://www.eucalyptus.com.

[5] K. Pepple, Deploying OpenStack. O’Reilly, 2011.

[6] Apache Cloudstack. (2013) http://cloudstack.apache.org.

[7] D. Nurmi, J. Brevik, and R. Wolski, “Qbets: Queue bounds
estimation from time series,” in Job Scheduling Strategies for
Parallel Processing. Springer, 2008, pp. 76–101.

[8] D. Nurmi, R. Wolski, and J. Brevik, “Probabilistic advanced
reservations for batch-scheduled parallel machines,” in Pro-
ceedings of the 13th ACM SIGPLAN symposium on principles
and practice of parallel programming. ACM, 2008, pp. 289–
290.

[9] A. Gandhi, “Dynamic server provisioning for data center
power management,” Ph.D. dissertation, Intel, 2013.

[10] A. Gandhi, M. Harchol-Balter, and I. Adan, “Server farms
with setup costs,” Performance Evaluation, vol. 67, no. 11,
pp. 1123–1138, 2010.

[11] L. A. Barroso and U. Hölzle, “The case for energy-
proportional computing,” IEEE computer, vol. 40, no. 12, pp.
33–37, 2007.

[12] H. N. Van, F. D. Tran, and J.-M. Menaud, “Performance and
power management for cloud infrastructures,” in Cloud Com-
puting (CLOUD), 2010 IEEE 3rd International Conference
on. IEEE, 2010, pp. 329–336.

[13] R. Bahsoon, “A framework for dynamic self-optimization
of power and dependability requirements in green cloud
architectures,” in Software Architecture. Springer, 2010, pp.
510–514.

[14] A. J. Younge, G. Von Laszewski, L. Wang, S. Lopez-Alarcon,
and W. Carithers, “Efficient resource management for cloud
computing environments,” in Green Computing Conference,
2010 International. IEEE, 2010, pp. 357–364.

[15] wake-on lan. (2013) http://en.wikipedia.org/wiki/
Wake-on-LAN.

[16] A. Software Development. (2013) http://en.wikipedia.org/
wiki/Agile software development.

[17] P. Xiong, Z. Wang, S. Malkowski, Q. Wang, D. Jayasinghe,
and C. Pu, “Economical and robust provisioning of n-tier
cloud workloads: A multi-level control approach,” in Dis-
tributed Computing Systems (ICDCS), 2011 31st Interna-
tional Conference on. IEEE, 2011, pp. 571–580.

[18] A. Beloglazov and R. Buyya, “Energy efficient resource
management in virtualized cloud data centers,” in Proceedings
of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing. IEEE Computer
Society, 2010, pp. 826–831.

[19] J. Fontán, T. Vázquez, L. Gonzalez, R. S. Montero, and
I. Llorente, “Opennebula: The open source virtual machine
manager for cluster computing,” in Open Source Grid and
Cluster Software Conference, vol. 86, 2008.

[20] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload
characterization and prediction in the cloud: A multiple time
series approach,” in Network Operations and Management
Symposium (NOMS), 2012 IEEE. IEEE, 2012, pp. 1287–
1294.

[21] R. Birke, L. Y. Chen, and E. Smirni, “Data centers in the
cloud: A large scale performance study,” in Cloud Comput-
ing (CLOUD), 2012 IEEE 5th International Conference on.
IEEE, 2012, pp. 336–343.


