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Abstract

Virtualization has become increasingly popular for en-
abling full system isolation, load balancing, and hardware
multiplexing for high-end server systems. Virtualizing soft-
ware has the potential to benefit HPC systems similarly by
facilitating efficient cluster management, application iso-
lation, full-system customization, and process migration.
However, virtualizing software is not currently employed in
HPC environments due to its perceived overhead.

In this work, we investigate the overhead imposed by
the popular, open-source, Xen virtualization system, on
performance-critical HPC kernels and applications. We
empirically evaluate the impact of Xen on both communi-
cation and computation and compare its use to that of a
customized kernel using HPC cluster resources at Lawrence
Livermore National Lab (LLNL). We also employ statisti-
cally sound methods to compare the performance of a par-
avirtualized kernel against three popular Linux operating
systems: RedHat Enterprise 4 (RHEL4) for build versions
2.6.9 and 2.6.12 and the LLNL CHAOS kernel, a special-
ized version of RHEL4. Our results indicate that Xen is
very efficient and practical for HPC systems.

1 Introduction

Virtualization is a widely used technique in which a soft-
ware layer multiplexes lower-level resources among higher-
level applications and system software. Examples of virtu-
alization systems include a vast body of work in the area
of operating systems [27, 25, 21, 24, 3, 13], high-level lan-
guage virtual machines such as those for Java and .Net, and,
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more recently, virtual machine monitors (VMMs). VMMs
virtualize entire software stacks including the operating sys-
tem (OS) and application, via a software layer between the
hardware and the OS of the machine. VMMs offer a wide
range of benefits including application and full-system iso-
lation (sand-boxing), OS-based migration, distributed load
balancing, OS-level check-pointing and recovery, and sup-
port for multiple or customized operating systems.

This added flexibility however, can potentially introduce
significant execution overhead due to the extra level of in-
direction and interference between the hardware and appli-
cation. Recent VMM optimizations and advances however,
attempt to reduce this overhead to zero. One such tech-
nique is paravirtualization [1] which is the process of strate-
gically modifying a small segment of the interface that the
VMM exports along with the OS that executes using it. Par-
avirtualization significantly simplifies the process of virtu-
alization (at the cost of perfect hardware compatibility) by
eliminating special hardware features and instructions that
are difficult to virtualize efficiently. Paravirtualized systems
thus, have the potential for improved scalability and perfor-
mance over prior VMM implementations. A large number
of popular VMMs employ paravirtualization in some form
to reduce the overhead of virtualization [1, 32, 23, 16].

Despite the flexibility benefits, performance advances,
and recent research indicating its potential [18, 35, 12, 15],
virtualization is currently not used in high-performance
computing (HPC) environments. One reason for this is the
perception that the remaining overhead that VMMs intro-
duce – even highly optimized VMMs – is still unacceptable
for performance-critical applications and systems. The goal
of our work is to evaluate empirically and to quantify the
degree to which this perception is true, specifically for the
Linux operating system and the Xen [23] paravirtualizing
VMM.



Xen is an open-source virtual machine monitor for the
Linux operating system which reports low-overhead and ef-
ficient execution of Linux [31]. Linux, itself, is the cur-
rent operating system of choice when building and deploy-
ing computational clusters composed of commodity com-
ponents. In this work, we study the performance impact of
Xen using current HPC commodity hardware at Lawrence
Livermore National Laboratory (LLNL). Xen is an ideal
candidate VMM for an HPC setting given its large-scale de-
velopment efforts [23, 33] and its availability, performance-
focus, and evolution for a wide range of platforms.

We objectively compare the performance of benchmarks
and applications using a Xen-based Linux system against
three Linux OS versions and configurations currently in
use for HPC application execution at LLNL. The Linux
versions include Red Hat Enterprise Linux 4 (RHEL4) for
build versions 2.6.9 and 2.6.12 and the LLNL CHAOS ker-
nel, a specialized version of RHEL4 version 2.6.9.

We have collected performance data using micro- and
macro-benchmarks from the HPC Challenge, LLNL ASC
Purple, and NAS parallel benchmark suites among oth-
ers, as well as using a large-scale, HPC application for
simulation of oceanographic and climatologic phenomena
(c.f. [34] for complete details). However, due to space limi-
tations, in this paper we focus only on the performance eval-
uation of the paravirtualized computational and commu-
nications subsystems, including MPI-based network band-
width and latency, and CPU processing.

We find that the Xen paravirtualizing system, in gen-
eral, does not introduce significant overhead over the other
OS configurations that we study – including the specialized
CHAOS kernel – for almost all of the test cases. The one
exception is for the bidirectional MPI network bandwidth
where the performance impact is only for a small number of
message sizes and is generally small. Curiously, in a small
number of other cases, Xen improves subsystem or full sys-
tem performance over various other kernels due to its im-
plementation for efficient interaction between the guest and
host OS. Overall, we find that Xen does not impose an oner-
ous performance penalty for a wide range of HPC program
behaviors and applications. As a result we believe the flex-
ibility and potential for enhanced security that Xen offers
makes it useful in a commodity HPC context.

In the sections that follow, we first present background
and motivation for the use of paravirtualized systems in
HPC environments. In Section 3, we overview our exper-
imental methodology, platform, operating systems, VMM
configuration, and applications. We then present our results
(Section 4), the related work (Section 5), and our conclu-
sions and future work (Section 6).

2 Background and Motivation

Our investigation into the performance implications of
paravirtualization for high performance computing (HPC)
systems stems from the need to improve the flexibility
of large-scale HPC clusters at Lawrence Livermore Na-
tional Laboratory (LLNL) without introducing serious per-
formance degradations. For example, Xen currently sup-
ports guest-OS suspend/resume and system image migra-
tion. If it does not impose a substantial performance cost,
we believe it is possible to use this facility to implement
automatic checkpoint/restart for cluster users without mod-
ifications to the Linux kernel. The resulting system, then,
implements an important functionality with no impact on
user programming effort and without the maintenance dif-
ficulties associated with the use of non-standard operating
system kernels.

OS migration is an added benefit to full-system virtual-
ization that makes deployment and maintenance of VMM-
based HPC clusters appealing. Not only can effective mi-
gration be used for load balancing, but also it can be used
for proactive replacement of failing hardware. For exam-
ple, in the current system deployment at HPC centers, if a
hardware failure occurs, the application which was running
on it normally has to be restarted from the last checkpoint.
A proactive approach can avoid this re-execution overhead
by migrating applications off of machines requiring main-
tenance or exhibiting behaviors indicative of potential fail-
ures (disk errors, fan speed inconsistency, etc.). Such an ap-
proach can potentially save HPC centers thousands of com-
putational hours and leading to higher hardware utilization
rates.

In addition, it is possible for one cluster to run different
Linux images which aids software maintenance (by provid-
ing an upgrade path that does not require a single OS “up-
grade” event) and allows both legacy codes and new func-
tionality to co-exist. VMMs also enable very fast OS in-
stallation (even more when coupled with effective check-
pointing), and thus, their use can result significant reduc-
tions in system down time for reboot. Finally, VMMs offer
the potential for facilitating the use of customized operating
systems [18, 35, 12, 15] that are optimized for, and tailored
to the needs of individual applications.

Though many of the benefits of virtualization are well
known, the perceived cost of virtualization is what makes
it of questionable use to the HPC community, where per-
formance is critical. This overhead however, has been the
focus of much optimization effort recently. In particular,
extant, performance-aware, VMMs such as Xen [23], em-
ploy paravirtualization to reduce virtualization overhead.
Paravirtualization is the process of simplifying the interface
exported by the hardware in a way that eliminates hardware
features that are difficult to virtualize. No application code



must be changed to execute using a paravirtualizing system
such as Xen. A more detailed overview of system-level vir-
tual machines, and paravirtualization can be found in [28].

To investigate the performance implications of using par-
avirtualization for HPC systems, we have performed a rigor-
ous empirical evaluation of HPC systems with and without
virtualization using a wide range of HPC benchmarks, ker-
nels, and applications, using LLNL HPC hardware. More-
over, we compare VMM-based execution with a number
of non-VMM-based Linux systems, including the one cur-
rently employed by and specialized for LLNL users and
HPC clusters. We investigate the effects of paravirtualiza-
tion on the two most critical application performance com-
ponents – interprocess communication and per-processor
execution speed – as a way of gauging whether a more
full-scale engineering effort to deploy paravirtualization at
LLNL should be mounted.

3 Methodology and Hardware Platform

Our experimental hardware platform consists of a four-
node cluster of Intel Extended Memory 64 Technology
(EM64T) machines. Each node consists of four Intel Xeon
3.40 GHz processors, each with a 16KB L1 data cache and
a 1024KB L2 cache. Each node has 4GB of RAM and a
120 GB SCSI hard disk with DMA enabled. The nodes are
interconnected with an Intel PRO/1000, 1Gigabit Ethernet
network fabric using the ch p4 interface with TCP/IP. We
used ANL’s implementation of message passing interface
(MPI) protocol; i.e. MPICH v1.2.7p1 for establishing com-
munications between the distributed processes on different
nodes in the cluster.

We perform our experiments by repeatedly executing the
benchmarks and collecting the performance data. We per-
form 50 runs per benchmark code per kernel and compute
the average across runs. We perform a t-test at the α ≥ 0.95

significance level to compare the means of two sets of ex-
periments (e.g. those from two different kernels). The t-test
tells us whether the difference between the observed means
is statistically significant. More information on the t-test
and the formulation we use can be found in [19, 5].

3.1 HPC Linux Operating System Comparison

We empirically compare four different HPC Linux op-
erating systems. The first two are current releases of the
RedHat Enterprise Linux 4 (RHEL4) system. We employ
builds v2.6.9 and v2.6.12 and refer to them respectively in
this paper as RHEL2.6.9 and RHEL2.6.12.

We also evaluate the CHAOS kernel. CHAOS is the
Clustered, High-Availability, Operating System [9, 6] from
LLNL. CHAOS is a Linux distribution based on RHEL4
v2.6.9 that LLNL computer scientists have customized for

the LLNL HPC cluster hardware and for the specific needs
of current users. In addition, CHAOS extends the origi-
nal distribution with new administrator tools, support for
very large Linux clusters, and HPC application develop-
ment. Examples of these extensions include utilities for
cluster monitoring, system installation, power/console man-
agement, and parallel job launch, among others. We em-
ploy the latest release of CHAOS as of this writing which is
v2.6.9-22; we refer to this system as CHAOS kernel in our
results.

Our Xen-based Linux kernel (host OS)1 is RHEL4
v2.6.12 with the Xen 3.0.1 patch. Above Xen, i.e. the
guest kernel, is a paravirtualized Linux RHEL4 v2.6.12,
which we configure with 4 virtual CPUs and 2GB of vir-
tual memory. We refer to this overall configuration as Xen
in our results. Xen v3 is not available for Linux v2.6.9,
the latest version for which the CHAOS extensions are
available. We thus, include both v2.6.9 and v2.6.12 (non-
CHAOS and non-XEN) in our study to identify and isolate
any performance differences between these versions. For
RHEL2.6.9, RHEL2.6.12, and CHAOS, we execute the ap-
plications without VMM (Xen) support. Only Xen employs
VMM support.

3.2 Benchmarks

We have done an extensive performance evaluation for
the different subsystems using a wide range of standard
benchmarks for the communications, computations, Disk
I/O and memory performance. Furthermore, we have used
macro-benchmarks and real HPC applications to evalu-
ate the overall performance of the paravirtualized system.
However, we opt to include only the communication and
computational subsystems performance evaluations in this
workshop paper, due to space limitations. The comprehen-
sive set of results are included in a thorough technical report
[34].

Our micro-benchmark set includes programs from the
HPC Challenge [20] and LLNL ASC Purple [2]. The pro-
grams are specifically designed to evaluate distinct per-
formance characteristics of machine subsystems includ-
ing MPI-based network bandwidth and latency, and CPU
processing. The ASC Purple Presta suite evaluates inter-
process network latency and bandwidth for MPI message
passing operations. The benchmark is written in C. We em-
ploy two of the benchmark codes to evaluate latency (Laten)
and bandwidth (Com). Presta uses MPI wtime to report the
time measurements of the codes, therefore we configure the
code to perform one thousand operations between calls to
MPI wtime to obtain accurate resolution.

1The Xen host OS is commonly referred to as dom0 and the guest OS
which sits above dom0 is commonly referred to as domU (U for unprivi-
leged). We also refer to the two kernels as the host OS and the guest OS,
respectively
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Figure 1. Com benchmark results for average network bandwidth (MB/s) for the MPI unidirectional
(left graph) and the MPI bidirectional test (right graph)

To evaluate computational overhead, we employ the
freely available Linpack benchmark [22]. Linpack is a li-
brary that solves dense systems of linear equations. A
benchmark based on the library, which is available in both
C and Fortran, and parallel and serial versions is deployed
in this study. We employ the serial Fortran implementation
as our micro-benchmark for evaluating computational per-
formance in isolation of other factors.

4 Benchmarks Results

In this section, we evaluate the performance impact of
using virtualization for specific subsystems of our cluster
system. We employ micro-benchmarks for network com-
munication and computation. We present and analyze the
results for each of these micro-benchmarks in the following
subsections.

4.1 Network Communication Performance

We first evaluate the impact Xen has on network com-
munication performance. We focus on the Message Pass-
ing Interface (MPI) for this investigation since applications
commonly employ MPI to facilitate and coordinate dis-
tributed execution of the program across cluster resources.
Although, applications differ in the type and amount of
communication they perform [36], MPI micro-benchmark
performance gives us insight into the performance overhead
introduced by virtualized communication.

Our MPI micro-benchmarks are part of the LLNL ASC
Purple Presta Stress Benchmark v1.2 [26]. To investigate
unidirectional and bidirectional bandwidth, we employ the
Com benchmark. Com calculates bisectional bandwidth for

unidirectional and bidirectional MPI process communica-
tion. Com outputs both bandwidth and the average time
calculated for the longest operation per test. We refer to the
latter as operation time (OpTime) and report these values in
microseconds. Each test consists of 1000 operations and we
consider 1 pair of MPI processes. We vary the message size
from 25 to 223 bytes. Our cluster system currently imple-
ments cluster connectivity via 1000Mb (12.5MB/s) Ether-
net.

Figure 1 shows the bandwidth attained by the different
kernels for unidirectional (left graph) and bidirectional mes-
sages (right graph). The y-axis in each graph is the attained
bandwidth in MB/s as a function of the message size shown
along the x-axis.

Using MPI, a user code saturates the available bandwidth
at approximately 12 MB/s equally for all kernels (except
RHEL2.6.9 unidirectional MPI bandwidth) for both unidi-
rectional and bidirectional MPI messages. RHEL2.6.9 per-
forms significantly worse than the other three kernels for
the MPI unidirectional test. This is due to a known imple-
mentation error in the TCP segmentation offload (TSO) of
RHEL Linux in versions prior to 2.6.11. The bug causes the
driver to limit the buffer size to the maximum transmission
unit (MTU) of the fabric and thus, to drop packets prema-
turely which results in the decreased bandwidth. This bug is
fixed in the CHAOS, Xen, and RHEL v2.6.12 kernels, and
thus they are not impacted by it.

Xen bandwidth for small buffer sizes is less than that
achieved by CHAOS or RHEL2.6.12 in the unidirectional
MPI test. This is due to the implementation of the network
layer in Xen. Xen provides two I/O rings of buffer descrip-
tors for each domain for network activity, one for transmit
and the other for receive. To send a packet, the guest OS
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Figure 2. Com benchmark results for the max-
imum bandwidth (MB/s) attained by MPI bidi-
rectional messages.

produces a buffer descriptor and adds it to the I/O ring. The
host OS consumes the requests using a simple round-robin
packet scheduler. The guest OS however, must exchange a
page frame with host OS for each received packet in order
to ensure efficient packet reception. This process degrades
the bandwidth achieved for small packet-sends since there
are a large number of guest-host interactions and heavy use
of the I/O rings of buffer descriptors. Xen is able to amor-
tize this overhead as the buffer size increases. Similarly, for
the bidirectional experiments, this difference is insignificant
for small packet sizes.

For the bidirectional experiments (right graph in Fig-
ure 1), CHAOS, and RHEL2.6.12 achieve hypersaturation
for message sizes between 212 and 216. This is due to
the buffering which the kernels perform that enables over-
lap of communication and message processing. Xen and
RHEL2.6.9 do not achieve the same benefits as CHAOS
and RHEL2.6.12 on average. Figure 2 shows the maxi-
mum bandwidth achieved across tests for different message
sizes. These results show that RHEL2.6.9 behaves simi-
larly to CHAOS and RHEL2.6.12. Thus, the apparent loss
of performance in the average for RHEL2.6.9 which we see
in figure 1 is due to greater variation rather than an absolute
loss.

However, Xen bidirectional performance for message
sizes 214 and 215 does not achieve the same maximum even
in the best case, i.e., there is a true systemic difference in
absolute best-case performance for these message sizes. We
believe that this effect is due to the management of the dual
ring buffer descriptors which reduces the effective buffer
size and thus, efficacy, of kernel buffering thereby reduc-
ing the amount of overlap that Xen is able to achieve. All
kernels saturate the network at the same level for message
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Figure 3. Com benchmark results for OpTime
for both MPI unidirectional and MPI bidirec-
tional tests. OpTime is the average time cal-
culated for the longest bandwidth operation
per test.

sizes greater than 216. We plan to investigate optimizations
for the I/O rings and descriptor management in Xen as part
of future work.

We present the OpTime for both unidirectional and bidi-
rectional messages in Figure 3. The y-axis is the average
time in microseconds for the longest operation in a test as
a function of the message size on the x-axis (lower is bet-
ter). The data indicates that there is no significant difference
in OpTime between Xen and Chaos and RHEL2.6.12. The
RHEL2.6.9 data for the unidirectional test shows a statis-
tically significant performance degradation in OpTime for
large message sizes. This is a side-effect of the presence of
the TSO bug in the Ethernet driver as we described previ-
ously.

We next evaluate network latency using the Presta Laten
benchmark from the ASC Purple suite. Laten calculates the
maximum latency for a test (1000 operations) between pairs
of MPI processes as the elapsed time in a ping-pong com-
munication. In this benchmark we vary the number of si-
multaneously communicating processes.

Figure 4 shows the results for the four kernels. The y-
axis is the average of maximum latency in microseconds
between per test as a function of the number of processes
shown on the x-axis (lower is better).

Although it is counter-intuitive, Xen has lower latency
for up to 32 MPI communicating processes than CHAOS
and RHEL2.6.12. This is a result of the use of page-flipping
in Xen that optimizes data transfer by avoiding copying be-
tween the guest OS and the host OS. However, as the num-
ber of processes increases, the overhead of Xen’s I/O rings
of buffer descriptors has a larger impact on the performance
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which the optimization cannot amortize to the same degree.
RHEL2.6.9 enables the lowest latency. This behavior

depicts an interesting effect of the TSO bug described ear-
lier. The bug causes RHEL2.6.9 to achieve lower bandwidth
than the other kernels but also to introduce less overhead for
individual sends that do not require buffering.

4.2 Computational Performance

HPC systems are performance-critical systems. The
computational performance is undoubtedly one of the most
important factors -if not the most important- in characteriz-
ing the efficiency of the HPC system. Therefore, we also
evaluate the computational performance of the paravirtual-
ized system in comparison with the non-virtualized kernels.

We use Linpack [10] LU decomposition for this study.
The Linpack LU decomposition process consists of two
phases: factoring and back-solve. The benchmark reports
the time taken in each phase and the rate of floating point
operations in mflops. Our input to Linpack is a matrix with
3000x3000 in double-precision values.

Figure 5 illustrates a Linpack performance comparison
between the four kernels. The y-axis is the performance
of the different kernels relative to the CHAOS kernel with
respect to the different metrics on the x-axis. The smaller
the time ratio, the better but the higher the Mflops ratio is
the better.

The comparison indicates that Xen is slower than
CHAOS kernel for the factoring phase and in terms of the
total time. However, Xen is faster than the two other RHEL
kernels in the factoring time and the total time. Further-
more, the t-values for these differences show statistical sig-
nificance for these differences even at the 0.999 confidence
level, but not between Xen kernel and CHAOS kernel .

Most of the difference occurs during the factoring phase
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Figure 5. Linpack LU decomposition 3000d
performance relative to CHAOS. Lower is bet-
ter for metrics factor, solve and total times.
Higher is better for Mflops.

of LU. In addition, the Xen kernel does appear to have a
shorter back-solve time than the three other kernels, but the
t-values do not any indicate statistical significance at the
0.95 confidence level. On the other hand, Xen achieves a to-
tal Mflops rate that is approximately 2% lower than CHAOS
kernels and 3% higher than the RHEL kernels. The rea-
son behind better Mflops performance for Xen is due to its
CPU scheduling process: a very efficient implementation of
the borrowed virtual time (BVT) scheduler [11]. BVT and
the overhead of scheduling in general positively impacts the
Mflops rate of Xen-based Linpack. CHAOS scheduler opti-
mizations enable additional performance improvements. As
a result, a Xen-based CHAOS implementation (that we are
building as part of future work) should be able to achieve
benefits similar to those for CHAOS reported here.

5 Related Research

The work related to that which we pursue in this paper,
included performance studies of virtualization-based sys-
tems. In this paper, we investigated the communications and
computational performance of HPC benchmarks. We con-
sider both subsystems’ performance for a number of impor-
tant HPC components when using paravirtualizing systems
for HPC cluster resources (IA64, SMP machines).

Other work has investigated the performance of Xen
and other similar technologies in a non-HPC setting. The
most popular performance evaluation of Xen is described
in [23]. A similar, yet independent but concurrent, study
is described in [7]. Both papers show the efficacy and
low overhead of paravirtualizing systems. The benchmarks
that both papers employ are general-purpose operating sys-



tems benchmarks. The systems that the authors evaluate are
IA32, stand-alone machines with a single processor. Fur-
thermore, those papers investigate the performance of the
first release of Xen, which has changed significantly. We
employ the latest version of Xen as of this writing (v3.0.1)
that includes a wide range of optimization and features not
present in the earlier versions.

Students as part of an unpublished, class project at the
Norwegian University of Science and Technology (NTNU)
have investigated Xen performance for clusters [14]. This
study investigates the network communication perfor-
mance in Xen versus a native kernel using low-level and
application-level network communication benchmarks. The
resulting Master’s Thesis [4] describes a port of Xen to
IA64 but provides only a minimal evaluation.

On the other hand, another study [29] done at Wayne
State University investigated the communication perfor-
mance for different network switch fabric on Linux clusters.
They evaluated performance of Fast Ethernet using ch p4
interface, Gigabit Ethernet using ch p4 interface, Myrinet
using ch p4 interface, and Myrinet using ch gm interface.
Based on that study results, we anticipate that Xen would
perform on Fast Ethernet and Myrinet using ch p4 simi-
lar to how it did perform on Gigabit Ethernet in our study.
However, It would be interesting to see how Xen page-
flipping algorithm, described earlier interact with Myrinet’s
OS-bypass features.

More recent studies evaluate other features of Xen such
as the performance overhead of live migration of a guest
OS [8]. They show that live migration can be done with
no performance cost, and with down times as low as 60
mseconds. In addition, related tools have been developed
to deploy guest OS on Xen VMM, as in Jisha [17] and
Xen-Get [30]. These systems do not rigorously investi-
gate the performance overheads of doing so in an HPC set-
ting.

6 Conclusions and Future Work

Paravirtualizing systems expose unique and exciting op-
portunities to the HPC community in the form of flexi-
ble system maintenance, management, and customization.
Such systems however, are currently not considered for
HPC environments since they are perceived to impose over-
head that is unacceptable for performance-critical applica-
tions and systems. In this paper, we present a view into a
empirical evaluation of using Xen paravirtualization for two
HPC-specific subsystems, and HPC kernels that shows that
such concern is unwarranted.

We compare three different Linux configurations with
a Xen-based kernel. The three non-Xen kernels are those
currently in use at LLNL and other sites of HPC clusters:
RedHat Enterprise 4 (RHEL4) for build versions 2.6.9 and

2.6.12 and the LLNL CHAOS kernel, a specialized version
of RHEL4 version 2.6.9. We perform experiments using
micro-benchmarks from LLNL ASC Purple and HPC Chal-
lenge benchmark suites. As a result, we are able to rigor-
ously evaluate the performance of Xen-based HPC systems
relative to non-virtualized system for two subsystems: com-
putational and communications.

Our results indicate that, in general, the Xen paravirtual-
izing system poses no statistically significant overhead over
other OS configurations currently in use at LLNL for HPC
clusters – even one that is specialized for HPC clusters –
except in one instance. We find that this is the case for
programs that exercise specific subsystems, a complete ma-
chine, or combined cluster resources. In the instances where
a performance difference is measurable, we detail how Xen
either introduces overhead or somewhat counter-intuitively
produces superior performance over the other kernels.

As part of future work, we are currently investigating a
number of research directions that make use of Xen-based
HPC systems. In particular, we are investigating techniques
for high-performance check-pointing and migration of full
systems to facilitate load balancing, to isolate hardware er-
ror management, and to reduce down time for LLNL HPC
clusters. We are also investigating techniques for automatic
OS installation over Xen [17] and for static and dynamic
specialization of OS images in a way that is application-
specific [18, 35].
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