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Abstract is measured by invocation latencinvocation latencyis the time

In order to execute a program on a remote computer, it must firs from application invocation to when execution of the prograc-
be transferred over a network. This transmission incursaer- tually begins. Research has shown that invocation latencyucial
head of network latency before execution can begin. Thistat in how users view the performance of an application. Earlykwo
can vary greatly depending upon the size of the program, evher investigated the effect of time-sharing systems on prcvdt;c(e.g.,
is located (e.g., on a local network or across the Internatyl the see [6]), and concluded, among other things, that incresyssiém
bandwidth available to retrieve the program. Existing teclogies, response time disrupted user thought processes. Moret igogh
like Java, require that a file be fully transferred before aincstart focuses on the effect of transmitting video over the Web, cord
executing. For large files and low bandwidth lines, this getan trasts thg nega}tlve impact of unpredlctab!e Web latendy earlier
be significant. systems in which latency was more pre_dlct_abl_e_ [15]._ _

In this paper we propose and evaluate a non-strict form of mo-  Network transfer delays can result in significant invooafi-
bile program execution. Aobile progranis any program that is ~ {€ncy and the communication delay can dominate execution of
transferred to a different machine and executed. The goabof mobile applications. To amortize the cost of network trant the
strict execution is to overlap execution with transferpaling the execution site, code execution should occur concurreritly (ve.,
program to start executing as soon as possible. Non-stkete- overlap) code and data transfer. However, existing mobite-
tion allows a procedure in the program to start executingaarsas 1o facilities such as those provided by the Java programren-
its code and data have transferred. To enable this techyplog vironment [11] typically enfprcestrlct executiorsemantics as part
examine several techniques for rearranging procedures rand of their runtime systemsStrict executiorrequires a program and
ganizing the data inside Java class files. Our results shatn- all of its potentially accessible data to fully transfer dref execu-

strict execution decreases the initial transfer delay lmew31%  tion can begin. The advantage of this execution paradigimeisit
and 56% on average, with an average reduction in overall exec ~€nables secure interpretation and straightforward lgnkind verifi-

tion time between 25% and 40%. cation. Unfortunately, strictness prevents overlap otatien with
network transfer, and little can be done to reduce the cdsao$fer

. latency.
1 Introduction In this paper we investigate the efficacymafn-strict execution

. . . . Procedures execute at the remote site without the restritiat the
The computational paradigm of the Internet is such thatie@pl  fijes the procedures are contained in transfer prior to di@cuTo

tions are retrieved from remote sites and processed looalgre examine the potential of non-strict execution, we use Javaua
transfe_red for remote execution. These appl_lcatlons deereel to execution environment because of its widespread use fernet
asmobile programs The performance a mobile program achieves  ¢,mnting. We show substantial performance benefits (ingef
is determined by processor speeds and the rate at whichlie ap oy ced invocation latency and decreased program exadirtie
cation can transfer to the remote site. As the gap betwe@®gsor  \yhen the transfer time is included). We also identify filetnes-
and network speeds continues to widen, mechanisms to cempen y,ring techniques that take advantage of non-strict ei@cutn
sate for network latency are required to maintain acceptaditfor- doing so, we propose compiler-based and profile-based agipze
mance of mobile programs. for partitioning and restructuring programs so that stess is en-
Performance is most commonly measured by overall program fqceq at the method level only. In addition, we investigate-
execution time. Additionally, in a mobile environment, feemance strict execution in the presence of two transfer methodetogar-
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the benefits of non-strict execution with program restriotu We
summarize our contributions in Section 8.

2 Related Work

While widespread computing with mobile programs is a retdyi
new phenomenon, there are three areas of research thabsegycl
related to our work: code compression, program restrugjyuand
continuous compilation. In this section, we discuss eaela am
turn, and compare existing work with our own.

2.1 Code Compression

For non-strict execution, we advocate maximizing the agbe-
tween execution and network transfer as a way to reduce te ov
head introduced by network delay (i.e., latency tolerangae)alter-
native and complementary approach is to reduce the quaitigta
transferred through compression (i.e., latency avoidan8everal
approaches to compression have been proposed to reduaarketw
delay in mobile execution environments, and we discus®these.

Ernst et al. [7] describe an executable representatioadcBIRISC
that is comparable in size to gzipped x86 executables andean
interpreted without decompression. The group describexansl
format, which they call the wire-format, that compresses size
of executables by almost a factor of five (gzip typically reesithe
code size by a factor of two to three). Both of these appraaahe
directed at reducing the size of the actual code, and do tehpt
to compress the associated data.

Franz describes a format callskiim binariesin which programs
are represented in a high-level tree-structured interatedormat,
and compressed for transmission across a wire [8]. The asnpr
sion factor with slim binaries is comparable to that repobriby
Ernst et al., however Franz’ reports results for compresefaen-
tire executables and not just code segments. Additionak war
code compression includes [9, 18, 27].

Our work is distinct from, and complementary to, code com-
pression techniques as the approaches mentioned do mophatte
reorganize the code and data that is being compressed. Qi me
ods will benefit from compression, just as the positive éffaxf
these compression techniques can be enhanced by reotgamiza
restructuring, and non-strict execution.

2.2 Program Restructuring

Classical program restructuring work attempts to imprawgmm
performance by increasing program locality. Historicaligcause
virtual memory misses have always incurred a very high qost,
grams are reorganized to increase the temporal localibheif t
code. For example, if procedures are referenced at appabsiyn

Most of the prior work in code reordering has focussed on im-
proving overall program locality, since the physical meymarcache
was a limited resource with a constrained size. As a resydtace-
ment policies and the cost of replacement play a signifiaalatin
the algorithms. Our problem, that of reorganizing mobilegrams
for wire transfer, is substantially different, in that weamly con-
cerned with the first use of an object and are (at least in threru
work) not concerned with subsequent uses.

2.3 Continuous Compilation

The final area of related research is that of continuous dampi
tion [23]. Continuous compilation is a method for improvitige
performance of Just-In-Time compilers. Just-In-Time dtanp
tion produces executable code just prior to when it is exstut
Continuous compilation combines interpretation of codiawom-
pilation in order to reduce the overall execution time of gre-
gram as well as to compile the program for future executimer-o
lapping interpretation with compilation. Our project isndar in
that our techniques can also provide a mechanism for imgroae
mote Just—In-Time compilation performance; but we overiaps-
fer with execution.

3 Non-Strict Execution for Java

To study the benefits of non-strict execution we require &qia
for mobile programs. Our methods can potentially be appiged
any mobile program system (e.g., Omniware [1] or ActiveX)[4]
but we choose to use Java because of its widespread use #rid bui
support for mobile programs. In this section we describe stant
execution and its implications for Java.

Java is an object-oriented language that enables remata-exe
tion by providing a platform independent executable regmes
tion and object-oriented modularity through an abstractialled a
class file The class file contains information about the Java classes
represented in an architecture—independent form, cajletbdes,
which may either be compiled for a particular architectureter-
preted. The class file information enables various run tiewiv
cation and security techniques to be implemented by arpiretar,
describes global data structures, and provides accesmation
through a set of access flags. The only requirement for execot
Java class files is the presence of the Java Virtual Machwigl)J
bytecode interpreter or Just-In-Time compiler. These amessary
since the bytecodes must be translated into architectefgpma-
chine instructions for execution.

In existing implementations of the Java interpreter andHd,
each Java class is in a separate file. Figure 1 provides d visthe
class files from an arbitrary application. There are twosgasA
and B, containing three and two methods, respectively. Tdsses

the same time, then they are placed on the same page. Attemptsilso contain global data (pictured) and local data (corthimithin

to understand and exploit reference patterns of code ardndate
resulted in such algorithms as least recently used pageceplent
(e.g., see [2, 13]) and Denning’s working set model [5].

More recently, as memory sizes have increased, interest has

shifted to improving both temporal and spatial locality &lrlev-
els of memory. Many software techniques have been develioped
improving instruction cache performance. Techniques sscha-
sic block re-ordering [14, 22], function grouping [10, 12, P2],
reordering based on control structure [20], and reordesfreystem
code [25] have all been shown to significantly improve inginn
cache performance. The increasing latency of second-texaties
means that expensive cache usage patterns, such as pigiggoon

the methods). The order of the methods in the class file ivalgunt
to that in the Java source file. We will use this example thinoug
the paper to clarify selected points.

The Java interpreter is invoked by providing the file name of
the class to be executed. All classes required by the program
commonly loaded when the interpreter is invoked. In additio a
mobile program context, all classes loaded are verified @eptne
linking process. The JVM allows dynamic loading of clasagive
entire class file must be loaded in order for any method witién
class to execute. Such strict execution of classes imposega
performance limitation. With existing network transfetaies, the
invocation latency can be significant, and the communioaliglay

between code laid out on the same cache line, can have decamati can dominate the execution time of a Java application.

effects on program performance.



Class A Class B
Gdata *A* Gdata *B*
Foo_A () Foo B ()

{...Foo B(); ... } {... ..}
Bar A

{...Foo_ A(; ..}
Main () Bar B (

{...Bar B(); ... } {..Bar_AQ); ... }

Figure 1: Example Java Application: Class A contains glalzah
and three procedures, Fdg Bar_A, and Main; Class B contains
global data and two procedures, EBpand BarB.

When a program is executed remotely, the first class file to ex-

ecute (the class containing the main routine: Class A inreiduy
is transferred to the remote site. In some implementatiotiser
non-local class files are not requested to transfer untipthgram
executes code that uses those classes. In other caseshelbtdss
files in the package or application may be transferred coently
in a non-specified order. The two restrictions to the JVM nhofle
execution are that (1) each class cannot start to executéhenfull
class file has been transferred, and (2) the class file musiférato
completion once it has started to transfer.

To decrease the invocation latency and to allow idle cyaes t
be used by overlapping execution with transfer, we propssga
non-strict transfer and execution model at the proceduethod)
level. In this model, a class file is partitioned into two gaglobal
data needed to begin execution of any method within the cask
code (with local data) needed to begin execution of eacheghae.
Transferring the global data first allows the JVM to incretadn
perform the linking process (described below) when ovgilagp
the execution with the transfer. In our non-strict versiérdava,
inside each class file a method delimiter is placed after pemte-
dure and its data. Thmethod delimiteis used to indicate that the
data and procedure have transferred, so that the proceglubzgin
execution. During the execution of a Java program, if a poceis
called but it or its data have not completed transferring pitogram
is stalled until the procedure’s delimiter has transferred

3.1 Non-Strict Java Virtual Machine Linking

The goal of this paper is to examine the performance imprevem
achievable from non-strict execution. For this approacheovi-
able, we need to address the effect of non-strict executidimking
of class files for Java. In this subsection, we describe ajlalbivel
the JVM changes that are necessary to support non-strictiges.
To allow non-strict execution to work using Java, the JVMkdin
ing of class files is performed incrementally. The linkingaoJava
program is the process of taking a Java binary (expressegtas b
codes) and putting it into the runtime state of the JVM by qenf
ing (1) verification (2) preparation and (3)resolutionon the byte-
code stream. Verification is the process of verifying thectire of
a Java class file to know it is safe to execute. Preparatiaiies
allocation of static storage and any internal JVM data $tines.

For initialization, Java executes any class variabledhiters (class
constructors) in textual order. Resolution is the procdssheck-
ing a symbolic reference before it is used. Symbolic refegsrare
usually replaced with direct references during this phasile
verification and preparation can be performed once the yltdia
is transferred, resolution can be performed lazily as ghoees are
invoked.

3.1.1 \Verification for Non-Strict Java

The JVM has five steps in verifying a class file as described9h [
The first two verify the structure of the class file and the glatata.
Since the global data is the first to transfer, this verifaatian pro-
ceed as soon as the global data is transferred. Step 3 isiped@s
each procedure is transferred, and Step 4 is performed hgeac
cedure is executed. Dependence analysis is performedlatege
to determine whether each class can be trusted for intetfmet
When classes are dynamically loaded, cross class deperslare
resolved during linking of these classes.

In a non-strict execution environment, incremental crdassc
dependency resolution is extended to the procedure levéhirW
procedures, dependence analysis remains as it is. Intequcal
dependence analysis is performed as methods are loade@@nd v
fied.

The other responsibility of the verification process is tovite
security for the underlying system in which the linked paogris
executed. The whole verification process can be avoideddwdsr
ing a means of trust between the compiler that produced tre Ja
class file and the JVM interpreter. For example, with segunigch-
anisms for digital signatures [3] or software fault isatat{26], the
verification step can be skipped completely.

4 First Use Procedure Reordering

To capitalize on the benefit achieved from non-strict exeautt
is necessary to predict the execution order of the procedaréhe
program, and then to place them in the class file in this predic
order. This order is different from prior code reorderingearch.
We need to predict Rirst Useordering, that is, the order in which

the methods are first executed. We examine the performance of

two reordering techniques. The first approach uses statigram
estimation to predict the order of invocation for procedysnd the
second approach uses first-use profiling to create a prddilesting
the order of invocation.

In this study, we model non-strict execution of procedures b
cause of the modularity that procedures provide. Nonistxecu-
tion can be performed at the basic block level; howeverjpieary
experiments show that checking for a delimiter at the ccsichuof
each basic block incurs additional overhead with littleediten-
efit. Code reuse in object-oriented languages, like Jagaltsein
small method sizes. The applications we use for our sinunati
support this claim. With method level support for non-stege-
cution, large procedures can still benefit by using the ctampo
break the procedure up into smaller procedures. In thisrpame
do not perform any procedure splitting since the proceduresr
test programs are of reasonable size.

4.1 Static First Use Estimation

The first technique we examine for first-use order predictises
a static call graph. To obtain this ordering, we construcasid
block control flow graph for each procedure with inter-pehosl
edges between the basic blocks at call and return sites. Ehe p
dicted static invocation ordering is derived from a modifikgpth



first search (DFS) of this control flow graph, using a few sia
heuristics to guide the search.

A flow graph is created to keep track of the number of loops
static instructions for each path of the graph. When geimgr#tie
first-use ordering, we give priority to paths with loops oerth pre-
dicting that the program will execute them first. When preoesa
forward non-loop branch, first-use prediction follows tlatpthat
contains the greatest number of static loops. In additioopihg
implies code reuse, and thus increases the opportunityvitap
of execution with transfer. The order in which proceduresfast
encountered during static traversal of the flow graph detersthe
first-use transfer order for the procedures. When procgssin-
ditional branches inside of a loop, the first-use travensalerse:
all the basic blocks inside the loop searching for procedatts,
before continuing on to the loop-exit basic blocks.

To process all the basic blocks inside of a loop before can
ing on, first-use prediction uses a stack data structure asigs :
pair, (x,y), onto the stack when processing a loop-exit akleaige
from a conditional branch. The pair consists of the uniquad
block ID and the ID of the loop-header basic block. Thesespaie
place holders, which allow us to continue traversing theplegit
edges once all the basic blocks within the loop have beerepsed.
When all the inner-basic blocks have been traversed, antioton
has returned to the loop-header basic block, the algoritmtimues
the psuedo DFS on the loop-exit edges by popping the paitheff
top of the stack. Upon termination of the modified DFS aldyonit
the static traversal of the procedures determines theiru#s or-
der, and the methods are reordered within each class file tthma
this ordering.

4.2 Profile Guided First Use Estimation

The second method we include for code reordering uses pifile
formation to determine the first-use ordering of procedufefirst-
use profile is generated by keeping track of the order in wpich
cedures are invoked during a program’s execution usingtepkar
input. All procedures that are not executed are given adtsstor-
dering during placement using the static approach destebeve.

Since a program’s execution path may be input dependent, we

attempt to choose adequate sets of inputs in order to prawviax-
ecution path that is similar to most of the possible inputs.our
results section we include the efficacy of using the trairinigial)

input set to determine the profile for the first use orderingefo
ecutions on both the training input set (perfect predigtamnd an
arbitrary, more robust test input set.

We now use our example application to clarify static and f@ofi
driven first use estimation. In the simple application, ¢hare no
control flow constructs except for the procedure calls and,tthe
static and profile driven method in this case produce the $mste
use call graph, pictured in Figure 2. We then restructurectass
files using this first use information and reorder the clags fds
pictured in Figure 3. In the next section, we use this new rerde
ing to determine when we transfer the classes over the nletfiwor
execution.

5 Methods of Transfer

In this section we discuss transfer techniques. The teabsigve
present are not the only techniques that can be used witlstnich-
execution to transfer files; they are two possible examplésos-

fer methodologies that can take advantage of non-striatigixan

and program restructuring.

e Parallel File Transfer - multiple class files transfer ingiep
dently and in parallel sharing fixed bandwidth.

Bar_B

Bar_A

Foo_B

Calalaiaie el

Figure 2: First Use Call Graph: The first use call graph is geted
using the static first use estimation or the profile. It is theed to
determine the order in which the files transfer for remoteatien.

o Interleaved File Transfer - all methods in the application a
interleaved and transferred as a single virtual class uasing
of the available bandwidth.

The transfer techniques we examine mask transfer latency by
overlapping execution with transfer. More specificallygytrare a
form a prefetching; the techniques predict the order in Wigio-
cedures execute, in attempt to transfer the code and datatpri
the cycle in which execution of each initiates. The techegjdo
not reduce the time required to transfer the files to the letin,
except for cases in which a program using non-strict execin-
ishes executing before transfer completes. For the resultss
paper, if an application completes execution before alhtie¢hods
have transferred, we terminate the remaining transfer.

5.1 Parallel File Transfer

Current Internet HTTP transfer technology allows multifiles to
be transferred in parallel. The latest release of the HTTRfec-
ification uses a single TCP connection. This allows up to toutr
standing requests can be made (pipelining) [21]. In thig,vaie
model the transfer of multiple classes at once to assurentétitods
arrive as near to the predicted start of their execution asiple.
The transferring files split the fixed amount of bandwidthilalde
equally. In addition, classes are not preempted by the feao$
other classes; i.e., they transfer to completion onceestart

Since bandwidth is shared, we require a schedule that iredica
when class files should be transferred to obtain efficientlapef
the execution with transfer. Aransfer Schedulis created using the
first-use procedure order determined by the reorderinghtqabs.
There are many factors that must be taken into account whet-de
oping a transfer schedule.

First, information about the size of each procedure and ¢ies
is required. The size of global and local data is also neeéed.
our experiments, we assume that all of the global data insz file
is transfered first. Each procedure is then transfered| ttata and
then code. Transfer completes once the entire class filsféranin
this manner. With the size information, the scheduler cakenaa
informed prediction of the time it will take to transfer tharious
parts of each file.



Class A Class B
Gdata *A* Gdata *B*
Main () Bar B ()

{...Bar B(); ... } {...Bar_A(); ... }

Bar A
{...Foo A(; ... }

Foo B()

Foo_A ()
{...Foo B(); ... }

Figure 3: Reordered Class Files: The example applicatiae-i
structured according to the static first use estimation erpfo-
file. Restructuring reorders the procedures so that thegapp
the class files in the order each is executed the first time.

Another key factor necessary for creating a schedule ig<
mining the relative point in time that execution transfess the
first time from one procedure to another. Figure 4 is an e
ple of a parallel file transfer schedule for the applicatimindducec
previously. Since the method main in class A calls method B
of class B, BaB must have completed transfer when procet
main executes the call to procedure Ham order for execution to
continue uninterrupted. The schedule determines thas 8lasust
begin transfer prior to when class A begins in order to enthae
method BarB has completed transfer when it is called. It is appar-
ent with this small example that a transfer schedule coctsbruis
complicated. The transfer order in the figure implies thathoe
Bar_B will execute enough unique bytes to allow for method_Bar
of class A to complete transfer. In addition, the transféresicile
guarantees that all such first use dependency requirenrentseh.

We examined several algorithms for creating a transfercidbe
and settled on a greedy algorithm that creates a schedudegsiog
the class files in terms of their first usage, overlappingstiemof
different class files to allow a procedure to transfer in ttmswitch
from one class file to the the next without stalling execution

The greedy algorithm establishes dependencies between file
from the first-use procedure reordering. Class file B is ddpen
on a class file A if class file A executes a procedure prior to the
execution of the first procedure of B. For example, in our damp
application, class file B is dependent on class file A sincenmai
executes prior to BaB. The global data in class B and all code
up to and including procedure B& must have completed trans-
fer when the method main in class A calls method_Ban class
B. With the dependence information, the algorithm uses tha-n
ber of unique bytes from each of the dependencies to detertinén
transfer schedule. If we are using the static first use estmtech-
nique, the number of unique bytes is computed by accumuglétia
total static size in bytes of procedures that are executiedd@ans-
ferring to the dependent class file. For the profile driveimestion
technique, unique bytes are accumulated using the tombsithe
instructions executed from the procedures that a classfilepen-
dent on. In our example, method BBris dependent ok unique
bytes from A wherdkis the sum of the total bytes of class A's global
data, and the (unique) bytes in method main (of class A).

During execution, a new class begins transfer once theqieetli
number of bytes from all classes that the new class is depende
have transfered. Additionally, there must be bandwidthlalvke
for the class to begin transfer. If there is a restrictionfteriumber
of classes that can transfer at once (e.g., four in the respmat-
ification of HTTP 1.1), then the class must wait until a cuthen
transferring class completes transfer. In our results@esgie ex-
amine the impact of limiting the number of classes that canstfier
at once.

Time Line
Start
Class B
Transfer Class B| Cl
ass A
Transfer Class A|— Gdata *B*
Gdata *A*
Bar_B ()
Main ()
Foo_B ()
Bar_A ()
Foo A ()
Endl

Figure 4: Parallel File Transfer Schedule: Class B must statier
than class A so that first use dependencies are met accoodihg t
requirements determined from the first use procedure ordktad-
ditional size information. The arrow indicates the placéhia code
where BarB is called by method main. BaB must have completed
transfer at this point in order to prevent the execution fetalling.

If the restructuring technigues have mispredicted the i@t
order, parallel file transfer must dynamically correct fustduring
execution. A misprediction occurs when a procedure is iadokut
the class file the procedure is contained in has not beerferads
and is currently not transferring. If there is availabledaidth, and
the limit on the number of files that can be concurrently traresl
has not been exceeded, the missing class file immediatety ta
transfer. If the class file cannot start transferring beeanfsthe
transfer file limit, it is queued up to be transfered next.

5.2

In Java, an application is composed of multiple classes each
taining global data, local data and code. This organizasisimilar

to other programming languages for which multiple files casg

the executable program: for those languages the final proiga
typically a single binary. With interleaved file transfel wonsider

a group of Java class files and compose a program as a single en-
tity (an interleaved file), consisting of multiple procedsiand data.

This technique transfers the procedures and data to thimakist

in the order specified in this virtual interleaved file.

An interleaved file is a reordering of procedures. The transf
algorithm takes the application and the restructuringrimgttion as
input. It generates an interleaved file from the input infation and
transfers it in the order dictated by the restructuring,, engthods
from different classes may be interspersed for transfes ffansfer

Interleaved File Transfer



(GData *A*
[Foo B ()

Figure 5: Virtual Interleaved File: This file is a combinatiof all
of the class files in an application. The methods are integl4o
provide the most efficient transfer schedule according ¢ofitist
use procedure order.

technigue assumes that transfer proceeds at the methae ¢ore)
level, in the order established by the restructuring ators. Fig-
ure 5 illustrates an interleaved file for our example apfilica

A method grouped together with its local data is a transfér un
A single transfer unit is transferred at a time in the ordexcded
by the first use procedure order. This allows each unit toieetjue
total bandwidth available. As with parallel file transfelploal data
is sent first and a procedure may execute if its code and da&a ha
all transferred. If this information has not arrived, them@ution is
stalled until the necessary transfer completes.

6 Experimental Methodology

To evaluate non-strict execution for Java, we used a byteaod
strumentation tool called BIT [16, 17]. The BIT interfaceabies
elements of the bytecode class files, such as bytecodedtistrs,
basic blocks and procedures, to be queried and manipulat#d.
use BIT to generate our first-use profiles, to perform thederamg,
and to simulate the execution of the restructured class files

to execute each program and its program average CPI is shown i
Table 3. Table 3 shows, the CPI (Alpha cycles per Java by&ecod
instruction) varies significantly with the applicationngaing from

82 to 3830. The reason for this high variance is that somei-appl
cations, such as Hanoi, invoke bytecodes that call unimsnted
implementations of some methods, e.g., window system. cales
use the average CPI for each program to model the number of cy-
cles it takes to execute each bytecode instruction whemipeirfig

our simulations. In our future work we plan to establish a enor
accurate measurement of the cycles required for each ofittie i
vidual bytecode instructions in order to more accuratelyglehthis
variance.

To evaluate non-strict versus strict execution we exantige t
performance of transferring the program over a T1 link (19él)
and a 28.8 Kbaud modem link (29Kb/sec). For a 500 MHz Al-
pha this equates to the T1 link taking approximately 3,8 %e3/to
transfer each byte, and 134,698 cycles to transfer 1 bytaédvio-
dem link. These numbers are used during our cycle level sitionl
to determine how many bytes of each class file have finished-tra
ferring each cycle. This number is then used to determinenwe
global data or a procedure has finished transferring.

Table 3 shows the average CPI and the number of cycles (in mil-
lions) to execute the program. The fourth column shows tietrau
of cycles (in millions) to transfer the complete program.eText
column shows the total number of cycles to execute the pnofpa
strict execution, which is the sum of columns three and fdire
fifth column shows the percent of strict execution due tothaedfer
delay. In reporting our results we computedaamalized execution
time The normalized execution time is calculated by taking the
number of cycles for our current configuration and dividihgttby
the number of cycles for strict execution reported in Table 3

7 Performance of Non-Strict Execution

To evaluate the impact of non-strict execution and progrestruc-
turing we present simulation results. The overall improgatrs
achieved by reducing the total number of cycles that an egpli
tion waits for transferring code and data. This improvenmestilts
from the combination of non-strict execution and transtéresiule

For our Java implementation, we use the JDK version 1.12beta techniques. Our results measure the impact on invocattendg

provided by Digital Equipment Corporation (DEC). The apat

as well as on total execution time. In addition, we discussitin

tions are instrumented and executed on a 500 MHz DEC Alpha pact of global data restructuring to provide additionafpenance

running operating system OSF V4.0. We present results éosith
Java programs described in Table 1. Five of the six programs a
applications and the other is an applet (Hanoi). The prognaere
chosen based on the large number of bytecodes containedhn ea
The programs are well known and have been used in previods stu
ies to evaluate tools such as Java compilers, decompilefieps,
bytecode to binary, and bytecode to source translator2f[7,

improvements.

7.1

Invocation latency is the number of cycles between theaitiith
of remote execution of an application and when executiorhef t
application actually begins. We present these results fthesize

Invocation Latency

Table 2 shows the general statistics for the benchmarks. Forthe importance of non-strict execution. If an applicatis@llowed

each benchmark we use two inputs, testinput and a smaller
train input. The static statistics shown in Table 2 apply to both
inputs, and the dynamic statistics are shown for the testtjngth

the dynamic statistics for the train input shown in paresithe

6.1 Simulator Model

Our simulation results are in terms of the number of Alpha pro
cessor cycles needed to execute a program taking into acttwin
cycles for transferring the program and the cycles for etieguhe
program. To develop a baseline for the number of cycles &sak
to execute a program with strict execution, we first timechgao-

to begin execution upon receiving the first procedure (egin())
instead of being required to wait for the entire first file @ansfer,
then invocation latency can be greatly reduced.

Table 4 shows the the number of cycles (in millions) from ini-
tiation until the program can start executing. For strict@axion,
this is the time it takes for thérst class fileto finish transferring.
For non-strict execution, this is the number of cycles ietakor
the global data and thfirst procedureto finish transferring. In
parenthesis is the percent decrease in cycles providedrbgtniot
execution. Data partitioning is included with these resbiit ex-
plained in detail in Section 7.3. In essence, it is the restining
of the global data throughout the class as it is needed, assepp

gram to find out the number of cycles to execute the program on to transferring it all at the start of the class. The resuimsthat

a 500 MHz Alpha 21164 processor. The number of cycles it took



BIT

Bytecode Instrumentation Tool: Each basic block in the iqggagram
is instrumented to report its class and method name

Hanoi

(Java Applet) Towers of Hanoi puzzle solver: Solutions ta@ & ring problems are compute

JavaCup

LALR Parser Generator: A parser is created to parse simplbematics expressions

Jess

Expert System Shell: Computes solutions to rule based esizzI

JHLZip

PKZip file generator: Input is combined into a single file inAgformat

TestDes

DES encryption/decryption algorithm: Encrypts a stringrtidecrypts it

Table 2: General Statistics for the Benchmarks. The coluem®sent the total number of files (classes), the size in&Byf the application,
the dynamic instruction count (in thousands), the stastrirction count (in thousands), the total number of methadd the average number

of instructions per method.

Table 1: Description of Benchmarks Used.

Dynamic Instrs|  Static Instructions Instrs
Total | Size | In Thousands In Thousands Total Per
Program || Files | KB Test (Train) Total | % Executed| Methods | Method
BIT 48 | 124 7763 (5582) 10.8 66 643 17
Hanoi 3 6 329 (68) 0.4 85 58 8
JavaCup 35| 139 318 (126) | 14.8 81 843 18
Jess 97 | 266 3116 (270) | 15.1 47 1568 10
JHLZip 7 35 2380(1023)| 4.0 76 186 22
TestDes 3 50 310 (303) 8.9 98 51 174

Execution T1 Link (Millions of Cycles) Modem Link (Millions of Cycles)

Cycles Transfer Exe| Total Strict | % Cycles || Transfer Exe Total Strict % Cycles
Program || CPI in Millions (secs) || Cycles (secs)| Cycles (secs)| Transfer || Cycles (secs)| Cycles (secs)| Transfer
BIT 147 1141 (2.3) 776 (1.6) 1916 (3.8) 40.5 || 28404 (56.8)| 27264 (54.5) 96.0
Hanoi 3830 1261 (2.5) 27 (0.1) 1289 (2.6) 21 2327 (4.7) 1066 (2.1) 45.8
JavaCup|| 1241 482 (1.0) 988 (2.0) 1471 (2.9) 67.2 35208 (70.4)| 34726 (69.5) 98.6
Jess 225 700 (1.4) 1885 (3.8) 2585 (5.2) 72.9 || 66932 (133.9)| 66232 (132.5) 99.0
JHLZip 82 194 (0.4) 258 (0.5) 452 (0.9) 57.0 9247 (18.5)| 9053 (18.1) 97.9
TestDes || 484 150 (0.3) 306 (0.6) 456 (0.9) 67.1 || 10952 (21.9)| 10802 (21.6) 98.6
AVG 1001 655 (1.3) 707 (1.4) 1361 (2.7) 51.1 || 25512 (51.0)| 24857 (49.7) 89.3

Table 3: Base Case Statistics. For each cycle count in thig,tthe equivalent number of seconds (on the 500Mhz Alphayavided in
parenthesis. The columns represent the average cyclasspaicition, total time in cycles for local execution, triamgime required in cycles,
total execution time in cycles using strict execution, dm@ercentage of cycles due to transfer for both transfes regspectively.

Table 4: The Effect of Non-Strict Execution and Program Restiring on Invocation Latency. For each transfer rate hess a cycle count
(in millions) to initiate strict execution, non-strict eotion, and non-strict execution with data partitionindgneThumbers in parenthesis are

T1 Link Modem Link
Program || Strict | NonStrict | Data Part.|| Strict | NonStrict | Data Part.
BIT 14 11 (19) 10(26) || 475| 386(19)| 352 (26)
Hanoi 13 7 (42) 3(77) || 452| 263(42)| 106 (77)
JavaCup 66 | 34 (49) 8(88) || 2333 | 1197 (49)| 287 (88)
Jess 24 16 (32) 7(72) 835 | 572(32)| 237(72)
JHLZip 13 8 (43) 3(76) || 465| 267(42)| 112(76)
TestDes 71 70 (1) 70 (1) || 2481 | 2459 (1)| 2457 (1)
AVG 33| 24(31)| 17(56)| 1173| 857 (31)| 592 (56)

the percent decrease of strict execution cycles.




the invocation latency can be significant for strict exemutiand
non-strict execution can help to reduce this delay by 31%686.5

7.2 Overall Execution

The impact of non-strict execution can also be measuredeinth
provement of total remote execution time. The performarsalts
presented in the remaining tables are normalized to thelibase
model of strict execution. We compute the results as theepérc
of normalized execution time by taking the number of cycles t
execute for a configuration and dividing it by the number ottt
cycles to execute the program from Table 3. For example, a per
cent normalized execution time of 60 means that the number of
cycles was 60% of the base, which resulted in a 40% improvemen
so smaller numbers are better. For all of the results, ow bas
ecution was a simulation in which the application trangférone
class to completion at a time and executed strictly: metteas
cute only when the entire class file in which they are conthimes
been transferred.

We present the results for the different transfer methods an
for the T1 and modem link using procedure reordering guided b
our estimated static call grapBCQ, using the train input profile
to guide the orderingTfain), and using the test input profile to
guide the orderingTes). All results are shown for executing the
test input. Therefore, the test results are perfect resinte they
use both the test input to profile and restructure the proguagnto
gather the simulation results. Whereas, the Train restdtsrmre
realistic since the train input is used to guide the firstarsering
and the simulation results are reported for the test input.

Table 5 and Table 6 show the results from our simulations us-
ing the parallel file transfer technique with restructuriogthe two
transfer rates, respectively. Results are shown for ligithe num-
ber of files that can be transferred in parallel to one, twd, fanr.
Results for simultaneously transferring an infinite numbiefiles

data into the global data thatustbe transferred before execution,
the global data transferred with methods, and the global dat
used as shown in Table 9. To break up the data at the methdd leve
we propose creating a JVi8lobalMethodData(GMD) structure.
There is a GMD before each procedure in the new non-strict pro
gram. The GMD contains only the data in the constant pool and
attributes that are needed to execute up to and includingrtte-
dure the GMD is placed before in the compiled bytecode filds Th
placement requires analysis to determine the first use bagttata
across the predicted ordering of procedures. This decdtigoal-
lows more efficient overlapping of computation and transsarce

we no longer have to wait for an entire global IMMassFi | e
structure to be transferred before transferring the firstgdure.
Table 10 contains the results from partitioning the datdnwibn-
strict execution and code restructuring.

We include global data partitioning as an aside since imple-
menting it increasingly complicates the existing linkingdaveri-
fication process in the JVM, as well as the incremental vatific
we suggest in this paper. All global data is currently reeghidur-
ing JVM verification; techniques are needed that enabldization
and security without requiring all of the global data at aritlee re-
sults presented do not account for the overhead from a manpleo
cated verification process. In our future work, we hope taldisth
techniques for such verification and to determine theirgrernce
impact so that we may more accurately determine the signifeca
of partitioning the global data.

7.4 Summary of Results

Our results show that significant performance gains canfieed
by overlapping execution with transfer. Invocation lateiscshown
to decrease on average between 31% and 56%.
Figure 6 provides a visual summary of our results for normal-
ized execution time. The Y-axis is the percentage of the wexec

are also shown. The results show that a maximum number of four tion time of the base case: strict execution with no restmireg.

parallel transfers is sufficient to provide most of the perfance
improvement for non-strict execution.

The benefits from having a single virtual file is shown in Ta-
ble 7. Since a Java program consists of many files, thesetsesul
model the effect of interleaving the transfer among theeddiit
files, or the performance that would be gained if the files were
combined into one unified virtual file. This technique transfone
method at a time according to the predicted order of theuetstr-
ing. The results show additional performance gains can hieaed
if all the class files were considered as one, or the transisrin+
terleaved between the different class files.

7.3 Partitioning of Global Data

Up to this point we have discussed restructuring the codéseaf
the class files only. We now consider restructuring the dldata.
The global data section of each class file is divided intocstmes
containing information about the global data. Table 8 shtives
major parts of the class file pertinent to global data and ibe s
of each as a percentage of the total global data size. Thede fie
are described in detail in [19]. Since the constant poolsakea
majority of the class file, we also describe the parts of thiscture

in Table 8. These results show that if we are to optimize tha da
for class files, then we should concentrate on the Constantiaid
the Utf8 Java strings.

Table 9 shows the size of the global data in comparison to the
local data for the programs we examined. Since the globa dat
needs to be transferred before the first procedure, it can@na
tageous to split the global data and to store the global thatiais
not needed at the method level. We examine breaking theIgloba

The results show that a 25% to 35% reduction in executed £¥&le
achieved when using the static call graph and 30% to 45% reduc
tion in cycles is achieved when using training inputs to guiice
testing inputs.

8 Conclusions

In this paper we present a non-strict model for transferaing ex-
ecuting programs for Internet computing. We present new-tec
niques for rearranging the program in first-use order aloity w
partitioning the global data for Java programs for more ieffic
non-strict execution. We also present two new methods &str
ferring Java programs to take advantage of non-strict orgefhe
results show that non-strict execution combined with fast-code
reordering and transfer methods significantly reduces atenty
of invoking a remote application and the execution time &note
computing for the programs we examined. The reduction iodav
tion latency ranges from 31% to 56% on average, and the rieduct
in execution time ranges from 25% to 40% on average.

Although these latency hiding techniques are useful forawp
ing Java performance, they may also be useful for Java detara-
pilation, e.g., just in time, ahead of time, or way ahead ofeti
compiling. If compilation can take place as the class filests-
ing transferred, then the latency of transfer and compitatian
overlap. In addition, non-strict execution techniquesloa@applied
to other languages and mobile program technologies, suéit-as
tiveX.



SCG Train Test
Program|| One| Two | Four | Inf. |[[ One | Two | Four | Inf. || One | Two | Four | Inf.
BIT 99 96 941 90 94 88 79 79 90 87 791 79
Hanoi 100 99 99 99 100 99 99 99 100 99 99 99
JavaCup| 82 81 76| 76 63 61 61| 59 61 56 55| 55
Jess 97 93 86| 77 94 90 78| 70 89 64 64| 64
JHLZip 97 82 74 74 82 79 72 72 75 73 72 72
TestDes 92 90 90| 90 91 90 90 | 88 73 72 72| 72
AVG 94 90 87 84 87 85 80| 78 81 75 74 74

Table 5: Normalized Execution Time for Parallel File Trasfising a T1 link. Results are shown for configurations wiikeetransfer
technology can only transfer one, two, four and an infiniteber of class files at a time.

Modem Link
SCG Train Test
Program|| One | Two | Four | Inf. [ One | Two | Four | Inf. || One | Two | Four | Inf.
BIT 95 92 88 76 57 55 53 53 56 54 53 53
Hanoi 90 90 90 | 90 90 88 88| 88 90 87 88| 87
JavaCup 69 69 67 65 63 60 58 56 54 54 54| 54
Jess 72 70 69 69 57 57 56 55 54 53 52 51
JHLZip 56 55 55 55 56 53 53 53 54 53 53 53
TestDes 86 85 85 85 82 82 81 76 63 62 61 61
AVG 78 7 76 73 68 66 65| 63 62 61 60 60

Table 6: Normalized Execution Time for Parallel File Trasf/sing a 28 Kbaud modem link. Results are shown for conftguraiwhere
the transfer technology can only transfer one, two, fouramhfinite number of class files at a time.

T1 Link Modem Link
Program|| SCG | Train | Test || SCG | Train | Test
BIT 84 82 77 62 50 49
Hanoi 99 99 92 88 85 85
JavaCup 68 61 49 54 51 46
Jess 67 62 52 55 50 42
JHLZip 73 67 67 54 44 44
TestDes 74 72 72 63 60 60
AVG 78 74 68 63 57 54

Table 7: Normalized Execution Time for Interleaved FileAster for both T1 and 28 baud modem transfer rates.

o
o
|

& Parallel File Transfer
PFC Data Partitioned

0
o

-3
o
I

B Interleaved File Transfer

M| FC Data Partitioned

70

60 1

50 1

40 -

30 4

Total Cycles Normalized to Strict Execution

SCG TRAIN TEST SCG TRAIN TEST
T1Link 28.8 Baud Modem

Figure 6: Summary of Results: Average normalized execttima for both transfer rates. Results are shown for parfiléetransfer, parallel
file transfer with data partitioning, interleaved file tréersand interleaved file transfer with data partitioning.



Percent of Global Data Percent of Constant Pool
Program || CPool | Field | Attrib | Intfc || Utf8 | Ints | Float | Long | Double | String | Class| FRef | MRef | NandT | IMRef
BIT 88.2 9.2 0.7 00 ]l 80.1] 22 0.0 0.0 0.0 1.8 2.4 2.6 45 0.1 6.3
Hanoi 93.5 3.3 0.8 011l 751| 0.0 0.0 0.0 1.2 0.2 3.0 4.3 6.3 0.0 9.9
JavaCup 95.3 2.9 0.5 0.0 80.3 0.3 0.0 0.0 0.0 2.3 1.7 1.8 6.1 0.1 7.3
Jess 95.6 2.0 0.6 0.1 81.9 0.2 0.0 0.0 0.0 1.1 3.7 1.3 54 0.1 6.2
JHLZip 94.2 4.0 0.5 0.0 || 63.2| 17.0 0.0 0.0 0.0 1.0 1.6 31 6.0 0.1 8.0
TestDes 94.7 3.4 0.5 0.0 || 349 | 529 0.0 0.0 0.0 0.4 1.3 2.5 2.9 0.0 5.2
AVG 93.6 4.1 0.6 0.0 || 69.3] 12.1 0.0 0.0 0.2 0.9 2.3 2.6 5.2 0.1 0.0

Table 8: Breakdown of Global Data and Constant Pool: Perttiparts of ClassFile: Constant Pool (CPool), Fields, Attrés (Attribs),
Interfaces (Intfcs). Parts of the Constant Pool: Utf8 (Javiags), Integers (Ints), Floats, Longs, Doubles, Stijr@lasses, FieldRef Struc-
tures (FRefs), MethodRef Structures (MRefs), InterfacdHdéRef Structures (IMRefs). Data given is the percent efttital size of the

containing structure.

Table 9: Breakdown of data in the class files into data locatéthods and global data. The global data is further brokemdboto the data

Local Global % Globals | % Globals | % Globals
Program || Data (KB) | Data (KB) || Needed First| in Methods| Unused
BIT 43.9 56.9 34 63 3
Hanoi 1.8 3.1 21 75 4
JavaCup 53.9 59.4 17 82 1
Jess 93.8 129.9 19 61 20
JHLZip 15.1 12.0 19 79 2
TestDes 29.7 5.0 15 84 1
AVG 39.7 44.4 21 74 5

that must be transferred before execution, the data needeglttansferred with methods, and the unused data in thefikes

Table 10: The Normalized Execution Time for Partitioning fBlobal Data with Parallel File Transfer and the Interlebi#de Transfer
technique for both T1 and 28 Baud Modem Transfer Rates. Reatd shown for the parallel file transfer assuming a limfoof files for

parallel transfer.

Parallel File Transfer Interleaved File Transfer
T1 Link Modem Link T1 Link Modem Link
Program|| SCG | Train | Test || SCG | Train | Test || SCG | Train | Test || SCG | Train | Test
BIT 82 78 75 68 51 51 81 77 72 57 49 47
Hanoi 98 98 98 87 86 84 98 97 20 85 83 82
JavaCup 69 54 52 61 51 50 66 52 45 52 43 41
Jess 72 65 62 62 54 50 67 59 45 50 47 35
JHLZip 73 71 71 53 48 48 72 64 64 50 40 40
TestDes 89 71 71 84 76 60 73 70 70 61 58 58
AVG 81 73 71 69 61 57 76 70 64 59 53 51
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