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Abstract—In this paper, we investigate how to leverage the
dataflow programming model to facilitate the deployment of
multi-scale (sensors-edge-cloud) IoT applications end-to-end. To-
day, IoT deployment management is error-prone, tedious, and
manual – yet deployment configuration can have a significant
effect on application energy consumption and performance.
Our approach, called deployment-as-code, provides program-
ming directives that distribute application components across
heterogeneous devices (including microcontrollers), aid manage-
ment of the application lifecycle and facilitate optimization in
ways not available from traditional programming systems. We
implement our approach by extending an open-source dataflow
programming system for IoT, which we use to evaluate the
energy consumption of different deployment configurations and
IoT applications.
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I. INTRODUCTION

The Internet of Things (IoT) is a computing fabric that
enables ordinary, physical objects to monitor, analyze, actu-
ate, and control their environment automatically. This fabric
consists of sensing and computing devices that are embedded
in the physical environment, that employ a range of energy
sources, and that interoperate with co-located devices and
remote cloud services via one or more communication net-
works (if/when available). The heterogeneous, geographically
distributed, and failure-prone nature of these deployments
require that developers design their applications to be both
robust to failures and multiscale, i.e., able to leverage the
battery-powered or resource-constrained sensors, single-board
computers, mobile devices, and public/private clouds that
comprise the edge-cloud continuum.

To enable this, new programming platforms have emerged
that attempt to simplify the development of IoT applications,
often leveraging what has become known as the serverless
computing paradigm[1]. These platforms combine device-
specific software development kits (SDKs) with network pro-
tocol stacks to interface devices to “Functions-as-a-Service”
(FaaS) platforms that are either edge or cloud hosted. Server-
less computing abstracts away the complexities introduced
by deployment distribution, system management, networking
configuration, etc. On FaaS systems, programmers implement
their applications by writing simple event handlers (i.e., pro-
gram functions), which they register with the FaaS platform
for invocation when an event “fires.” Application functions are

stateless, use integrated services for persistence and coordina-
tion, are ephemeral (execute only when fired) and are easily
composed into microservices applications [2], [3].

Because most FaaS IoT platforms today derive from suc-
cessful cloud technologies, they are difficult to use in some IoT
settings. In particular, because the cloud is designed to provide
a virtualized “always on” set of services (e.g., as a computing
utility), these derivatives often lack features and capabilities
necessary to implement effective distributed IoT deployments,
particularly in remote, outdoor settings where network and
power infrastructure may be intermittently and unpredictably
available. Moreover, because they were designed for resource-
rich systems, most do not support sensors and devices with se-
vere resource constraints or non-traditional operating systems
uniformly. Independent of the platform, FaaS’s inherent event
driven (i.e., asynchronous, highly concurrent) nature can also
make application development challenging to reason about.

The LAMINAR programming system has been proposed
recently to address these challenges [4]. LAMINAR overlays
a dataflow programming model over a fault-resilient, log-
based FaaS runtime. Dataflow is a programming paradigm
that formulates programs as directed graphs in which nodes
are data-parallel functions and edges represent the flow of data
between them. Dataflow is uniquely amenable to IoT program-
ming since it focuses on data instead of control flow, which
is useful for stream processing, event-driven computing, and
highly parallel and concurrent workloads (all characteristics of
modern IoT applications). Moreover, dataflow has been used
successfully for asynchronous and parallel systems [5], [6],
[7], and a wide range of data analytics [8], [9], [10] to simplify
data processing at scale.

In this paper, we investigate how to leverage the com-
bination of dataflow programming and log-based runtime
to simplify IoT application deployment – the assignment,
commissioning, and configuration of application components
across the devices in a distributed IoT setting – in addition
to distributed execution. Given the multiscale capabilities of
IoT, deployment can have a dramatic effect on functional
and non-functional (e.g., failure resilience, energy efficiency,
etc.) application behavior. Today, such management is error-
prone, tedious, and manual. Our approach, called deployment-
as-code, provides directives that distribute application com-
ponents across multiscale devices in an IoT deployment,



aid management of the application lifecycle, and facilitate
optimization in ways not possible with traditional FaaS/asyn-
chronous systems. Key to this approach is that the deployment
directives are, themselves, single-assignment operations that
are part of the dataflow programming environment.

To unify deployment and execution, we build upon LAMI-
NAR with these key contributions

• We extend LAMINAR with end-to-end support for micro-
controllers and sensor networks and leverage its preamble
mechanism to enable programmatic energy-aware deploy-
ment management.

• We develop an alternative messaging layer for LAMINAR
that is based on MQTT [11] – a popular publish/subscribe
protocol used in many IoT contexts.

• We extend the LAMINAR preamble so that devices can be
programmed, and their deployments can be configured,
uniformly using the dataflow programming model.

Microcontroller devices play a critical role in most IoT
systems and using a single unifying programming model
for these and more resource-rich devices has the potential
to significantly improve IoT programmer productivity. Our
contributions show how application deployment spans device
scales ranging from microcontrollers to the cloud can be
developed as part of the application development process itself,
using dataflow semantics.

We illustrate these results empirically through a study of
the energy requirements associated with different LAMINAR
configurations using end-to-end IoT applications. Our results
indicate that deployment configuration has a significant effect
on energy efficiency for some edge devices, and predicting the
most efficient deployment is difficult.

In the following sections, we first overview related work and
the LAMINAR programming system that we extend and eval-
uate in this work. We describe how we use the LAMINAR ab-
stractions to facilitate a “deployment-as-code” IoT deployment
management methodology. We then detail our experimental
methodology and empirical evaluation. We measure the energy
consumption of different deployment scenarios using a real
IoT application and demonstrate how this approach improves
programmer productivity and energy-efficient application con-
figuration. We plan to make our extensions available as open
source when/if this paper is accepted.

II. BACKGROUND AND RELATED WORK

Our work leverages language-level abstractions and
dataflow programming model semantics to automate energy-
aware IoT application deployment. Although dataflow pro-
gramming has been widely studied for decades [12], [13],
[14], [15], it has received renewed interest recently for large-
scale data analytics [8], [9], [10]. These advances provide a
simple programming model for large-scale, parallel processing
of structured and semi-structured data on commodity clusters
or cloud servers [8], [9], [10]. Their execution engines au-
tomatically schedule, place, synchronize, and manage faults
for these workloads. MapReduce [8] represents programs as

a bipartite graph and Dryad [9] uses a more general directed
acyclic graph (DAG) (like LAMINAR).

These systems have been extended in multiple ways to
reduce their restrictions and support a broader range of al-
gorithms with greater efficiency [16], [17]. Ciel [10] extends
these programming models with better support for iterative
computations. Specifically, it adds dynamic control flow cre-
ation while maintaining fault resiliency. Although Ciel is more
dynamic, the static specification of a fault-resilient deployment
(nodes can come and go) works well for IoT applications.
Unfortunately, since these systems were designed for resource-
rich systems, they do not work in multiscale or wide-area
settings. Moreover, deployment is straightforward because
cluster/cloud systems are significantly more homogeneous
than IoT settings.

A. LAMINAR Programming System

The open-source LAMINAR programming system was re-
cently proposed to make use of the dataflow programming
model for IoT applications that run over heterogeneous, fault-
prone distributed systems [4]. LAMINAR augments the applica-
tive or functional programming semantics of dataflow [18]
with support for distributed deployment, partial failures, and
crash recovery. Applicative semantics enable application ro-
bustness through idempotency. Moreover, all computations
are functional so that any computation can be “replayed” to
implement “at-least-once” QoS semantics.

LAMINAR integrates a log-based, multi-scale, FaaS run-
time [19]. Functions are stateless and persist program state via
network-transparent logs that are append-only and lock-free.
Logs are less complex and more resilient than their file system
and database counterparts. Logs also enable causal tracking
and failure recovery [19], [20], [21], [22]. Thus, a program
that uses logs exclusively as program variable storage is single-
assignment and, thus, functional. Logs are named using URN’s
with no log spanning more than a single host. The runtime
implements triggered function invocation in response to data
being appended to a log (i.e., event handlers where the only
event is a log-append). The runtime uses ZeroMQ over POSIX
for log appends across devices. Although it is difficult to
compare LAMINAR with a semi-equivalent C version that is
not crash-consistent and uses locks, LAMINAR’s performance
ranges between in-memory C and C with simple Linux file-
based persistence [4].

A LAMINAR program consists of four primary program
constructs. Operands are external computations that introduce
data to an application. These include sensor readings (in an IoT
context), database reads, remote API calls, or arbitrary pro-
gram functions from a program or script capable of exercising
LAMINAR’s API. Nodes perform computations on data using
stateless functions written by the programmer in C/C++. Edges
express data flow between nodes. Graphs implement program
scoping and modularity. A program graph contains nodes and
edges organized as a directed, acyclic graph (DAG). Operands
carry the graph’s initial inputs (e.g., the inputs to the program),
and all node outputs are available at program termination.



Nodes “fire” (execute their computation) when all their inputs
are available. Nodes can be composed in a hierarchy where an
enclosing graph treats a subgraph as a single node. However,
graphs in LAMINAR are not strict with respect to graph
boundaries. Nodes in a graph can trigger dependent nodes
in other graphs without waiting for all nodes in the graph
to complete. This lack of graph strictness facilitates maximal
parallelism, which can significantly benefit performance for
multicore systems.

III. DEPLOYMENT-AS-CODE (DAC)

In this work, we propose “deployment-as-code (DAC)” – the
expression of deployment directives that distribute application
components to machines and that manage the application’s
overall lifecycle. DAC is similar in spirit to infrastructure-as-
code [23] systems like Kubernetes and Terraform but designed
for the most resource-constrained end of the edge-to-cloud
continuum. Our approach takes advantage of dataflow seman-
tics and program structure exposed by LAMINAR (e.g., the
program graph, mapping of nodes to physical hosts, log place-
ment, etc.) to enable developers to program the deployment
of their applications and enable the system to optimize this
deployment, e.g., to reduce energy consumption. Specifically,
we perform graph embedding of execution directives via a
simple API, as part of the dataflow specification for a program.
By doing so, we enable (i) the compilation process to auto-
matically construct per-device executable images (consisting
of both the deployment context and the program code), and
(ii) the dataflow runtime to automate ingress and egress of
data as well as computation scheduling and execution order
for the application.

To enable this, we extend the LAMINAR build process
and its deployment configuration mechanisms (the LAMINAR
preamble). To show that this approach generalizes to devices
common to edge/fog deployments, we also extend LAMINAR
with support for microcontrollers and sensor networks. The
result is a software system that enables heterogeneous devices
to be programmed and deployed uniformly, enabling deploy-
ment modifications to be affected with minimal code changes
and developer effort. We use this approach to explore the
energy consumption of different IoT application deployment
configurations (since it is critical for battery-powered edge/fog
devices). Other studies have shown that LAMINAR is also
efficient in terms of latency and end-to-end performance [4].

To test the effectiveness of DAC, we introduce a set of
extensions to LAMINAR that provide support for non-Linux
and less capable devices (e.g., microcontrollers, sensors), as
well as mobile devices that may not have symmetric network
connectivity with the other machines or platforms in a deploy-
ment. In particular, the LAMINAR messaging layer assumes
that network connections can be initiated from any node. In
many deployments, however, only connections from “inside”
the firewall or private/sensor network can be initiated.

To support asymmetric connectivity and more general de-
ployability, we extend the LAMINAR messaging interface with
support for MQTT as a configuration option. Supporting

MQTT transport enables a wide range of heterogeneous de-
vices to be integrated into a LAMINAR IoT deployment with
minimal porting effort. Moreover, MQTT is sufficiently effi-
cient when used for simple messaging, and popular IoT/sen-
sor network protocols support it (e.g., Zigbee, Z-Wave, Lo-
RaWAN, as well as cellular IoT and vehicular networks).

Our extensions require that each runtime instance in a
deployment establish a network connection with an MQTT
broker that is outside all firewalls and sensor networks. We
provide a message-level transparent gateway that translates
MQTT messages to ZeroMQ messages recognized by the
runtime and vice versa. Each runtime instance using the
MQTT transport requires its own transparent gateway, but
gateways can share one or more MQTT brokers. We perform
per-message authorization and password authentication to
MQTT brokers in a deployment by extending LAMINAR with
CAPLets [24] (capability-based, fine-grained access control).

Also, as part of extending LAMINAR for this study, we
introduce two new configuration options for implementing
LAMINAR logs: a file-based option that uses either the POSIX
file system (where available) or LittleFS [25], where POSIX
is not supported. The current LAMINAR log implementation
relies on Linux memory-mapped files, which are not typi-
cally available on microcontroller-based or mobile devices.
We also add an in-memory-only implementation of runtime
logs without persistence using in-memory data structures to
compare it to the performance of flash-memory persistence
(using LittleFS or POSIX) performance and for devices with
no access to persistent storage.

A. Programming Deployments

The key insight of DAC is that the dataflow programming
model can be used to encode both the application and the
deployment – the assignment of computations to execution
sites and communication events to network transits – in a
uniform way. All dataflow programming systems must, at
some level, encode an assignment of computations to proces-
sors and messages between computations to networks or other
communication substrates. This mapping can be delayed until
runtime (e.g., using a “work-stealing” scheduler in which idle
nodes acquire enabled computations from a pool of compu-
tations waiting to execute) or at compile time by embedding
the program DAG into a graph representing the deployment
topology (i.e., computational sites and network connectivity).

Our approach combines compile-time embedding with run-
time support to enable deployment across different device
scales and capabilities. The key insight is that the dataflow
representation (i.e., the program DAG) can be used as the
portable intermediate representation of the application – bring-
ing write-once-run-anywhere [26] to heterogeneous edge and
fog deployments. However, how devices are “commissioned”
(added to a deployment so they may be used to execute
a specific application component) varies widely by device
type. In particular, embedded microcontroller devices often
require cross-compiled code containing the operating system
and runtime environment along with the application to be



“uploaded” as a complete image and the device restarted to
implement commissioning.

Using LAMINAR, developers encode a program as a di-
rected, acyclic graph (DAG) in a preamble section of the
source code. This preamble must execute before application
computations. The preamble initializes the data structures
used by the LAMINAR runtime and records the node-to-host
mappings in LAMINAR logs. While the dataflow program
assigned to each node can differ, the preamble preceding the
application code must be the same in all code that comprises a
deployment. Note that the preamble and application dataflow
codes are part of the same source code compiled for each node
and then commissioned on that node.

We extend the LAMINAR preamble abstraction to allow it
to be decoupled from the application source. The DAG speci-
fication API used in the preamble encodes nodes (add node),
program inputs (add operand), and edges between nodes
(subscribe). Nodes are wrappers for application functions.
To encode a deployment, developers specify physical hosts
(add host) each with a unique integer identifier that must be
included in the add host specifiers to indicate a node-to-host
assignment. Each host in a deployment must include a set host
specifier in its preamble to establish its identifier.

Figures 1 and Listing 1 show the DAG and preamble for an
example application, which we describe in the next section.
For DAC, we extract the preamble out into a separately
compiled code component. The preamble is compiled into
an executable binary on systems with full operating system
process support. For microcontrollers, it is loaded as part of
image creation and executed as part of the “setup” routine.

This separation offers two benefits. First, a developer can
change deployments without recoding or recompiling the
application program. The preamble creates LAMINAR logs
that the runtime uses to execute the application (termed the
application “body” in our parlance). A change in deployment
changes only these logs and not the application code itself.
Secondly, the LAMINAR logs are binary compatible and self-
describing across storage implementations. Thus, it is possible
to create the preamble logs on one host and distribute them
(via a network copy) to all hosts in a deployment using the
same storage technology.

Note that network topology information is not specified
in the preamble (the representation is network-transparent).
Thus, we assume that the deployment engineer understands
the underlying network connectivity topology and will make
node-to-host assignments such that any pair of nodes in the
program graph connected by a directed edge will be assigned
to hosts that can communicate. We are developing support for
checking this at deployment time as part of future work.

Our approach also obviates the need for distributed barrier
synchronization after executing the preamble. That is, each
host must execute the preamble before it begins executing the
application but it need not wait for all other nodes to do so
before proceeding with application execution.

The DAC deployment process proceeds as follows. The
application and preamble code is (cross-)compiled and dis-

tributed to the deployment hosts (and the LAMINAR runtime
is started on each). Or, if necessary, because a network copy
is not feasible, the preamble is executed on each host. Then
the application body’s execution is initiated by presenting
program inputs to the body’s input nodes. To change the
configuration of and to redeploy a distributed application, the
developer need only change the node-to-host mappings (via
the add node API) and recompile/distribute the preamble to
the hosts in the deployment. Note that, at present, deployment
or redeployment is a globally synchronized operation; we
have not yet implemented a “rolling deployment” feature.
The application must stop before the preamble outputs are
redeployed and then restarted. We currently use scripts to
automate this process as much as possible.

IV. EXPERIMENTAL METHODOLOGY

To illustrate the utility of deployment-as-code, we measure
the energy usage of a distributed anomaly detection appli-
cation for sensor telemetry data. The application is complex
enough to demonstrate the value of deployment options and
of using LAMINAR as a high-level dataflow representation
for distributed multiscale IoT programming. However, this
complexity makes it difficult or impossible to generate an
equivalent implementation using an alternative technology
(e.g. for comparative purposes). It might be possible to achieve
similar overall functionality, but verifying that both implemen-
tations are the same is infeasible. Thus, our intention with
this study is to demonstrate how our work enables exploring
alternative deployment options via minimal code changes.
That is, because our approach eases deployment, it allows the
deployment engineer a greater latitude of choices from which,
in this study, the most energy-efficient may be chosen.

The application consists of multiple anomaly detectors and
an arbitrator (ARB) that decides whether to report an anomaly
based on the detector outputs. We use three algorithms in
this study. KS which compares the distribution of the most
recent k values to the previous k values using a Kolmogorov-
Smirnoff test and reports an anomaly when the distributions
differ. CORR computes the linear correlation between the
most recent k values and the previous set of k values and
reports an anomaly when the correlation coefficient is not
statistically significant. REG computes the linear regression
coefficients and confidence bounds using the k most recent
values as explained variables and the previous set of k val-
ues as explanatory values. It reports an anomaly when both
coefficients are outside their respective confidence intervals.

The experiments stream data from a sensor to the detection
algorithms on a fixed and periodic duty cycle. Each algorithm
independently determines whether the most recent values
constitute an abnormal condition and reports a binary value
(i.e., anomaly or not-anomaly) to the arbitrator. The arbitrator
implements a voting algorithm to determine whether it should
report an anomaly. Figure 1 shows the LAMINAR (dataflow)
representation of the application. Listing 1 shows the preamble
(using our API) that constructs the executable representa-
tion, mapping nodes/operands onto two hosts (HOST1 and



Anomaly Detection Application
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Fig. 1. Dataflow representation of the anomaly detection application.

HOST2). This representation places the operands and the KS
node on HOST1; all other nodes are on HOST2. Reconfigu-
ration requires only that the host assignments be updated.

Our experiments use a duty cycle for sensor telemetry of
12 seconds. Each anomaly detection algorithm computes the
most recent k = 5 measurements. In this way, the application
compares the most recent minute’s measurements with the
previous minute’s measurements to determine if there has been
a change in conditions.

Listing 1. LAMINAR Anomaly Application Preamble
1 l a m i n a r i n i t ( ) ;
2 / / s p e c i f y t h e h o s t s i n t h e dep loyment
3 / / HOST1 and HOST2 a r e un iqu e i n t e g e r s
4 a d d h o s t (HOST1 , IP1 , ” / anomaly app ” ) ;
5 a d d h o s t (HOST2 , IP2 , ” / anomaly app ” ) ;
6 / / c r e a t e t h e a p p l i c a t i o n d a t a f l o w nodes
7 / / K ID , R ID , C ID and A ID a r e un iq ue i n t e g e r s
8 add node (HOST1 , K ID ,{DF CUSTOM, KS}) ;
9 add node (HOST2 , R ID , {DF CUSTOM,REG}) ;

10 add node (HOST2 , C ID ,{DF CUSTOM,CORR}) ;
11 add node (HOST2 , A ID ,{DF CUSTOM,ARB}) ;
12 / / c r e a t e t h e g raph i n p u t nodes ( o p e r a n d s )
13 / / and l i n k them t o KS , REG, and CORR
14 i n t op node = 5 ;
15 f o r ( i n t IN =0; IN < 5 ; IN ++) {
16 / / c r e a t e i n p u t node
17 add operand (HOST1 , op node ) ;
18 / / c r e a t e edges t o
19 / / KS , REG, and CORR
20 s u b s c r i b e ( K ID , IN , op node ) ;
21 s u b s c r i b e ( R ID , IN , op node ) ;
22 s u b s c r i b e ( C ID , IN , op node ) ;
23 op node ++;
24 }
25 / / c r e a t e edges from KS , REG, and CORR t o ARB
26 s u b s c r i b e ( A ID , IN0 , K ID ) ;
27 s u b s c r i b e ( A ID , IN1 , R ID ) ;
28 s u b s c r i b e ( A ID , IN2 , C ID ) ;
29 / / c o n s t r u c t t h e dep loyment f o r each h o s t
30 l a m i n a r s e t u p ( ) ; / / b u i l d s t h e l o g s

A. Experimental Setup

We measure the energy use by resource-constrained edge
devices when executing different deployment configurations
of the anomaly detection application. In all configurations, we
place the ARB component on a cloud-hosted virtual machine
(VM), which reports the presence or absence of an anomaly.
The edge device generates sensor readings (simulated using a
random floating point number generator) for the application.

We compare the energy requirements of LAMINAR using
two different edge devices: an Arduino Feather Huzzah (to
which we refer to as the Feather) and a Raspberry Pi 3B+.
The Feather implements an 80Mhz ESP8266 microcontroller
with 32KB/80KB instruction/data storage, and 4MB flash. The
Pi 3B+ has a 1.4GHz Cortex-A53 processor, 1GB of memory,
and 32GB flash. Both devices include a built-in 802.11 WiFi

networking interface; however, the Feather is only able to
operate at 2.4 GHz. Anecdotally, some routers could not
correctly negotiate the Feather’s frequency capability. For this
reason, we conducted all experiments using a 2.4 GHz router.
We used the same 5V/2.5A power supply in all experiments
for both devices. We report results in terms of energy usage by
the edge devices in different deployment configurations. All
energy measurements were gathered using an Onset UX120-
018 Hobo Plug Load Logger attached to a CanaKit 5V/2.5A
power supply. The logger was set to record energy measure-
ments every second (the finest resolution available).

The VM was an Ubuntu 20.04 image hosted in a campus
cloud using the KVM hypervisor and a 1GB network interface.
When instantiated, the instance was configured with 2 cores
(2.5 GHz) and 8GB of memory. We used the same VM for
all experiments. The ARB in all experiments was configured
to use the default messaging and persistence modes (cf.
Section II). When the device was configured to use MQTT,
the MQTT broker (implemented by mosquitto version 1.6.9)
was colocated with the ARB.

We connected the edge device via 802.11 to a local router,
which connects to the common carrier Internet and the campus
network, hosting the campus cloud and the VM. The LAMI-
NAR MQTT transport is translated to ZeroMQ via the MQTT-
LAMINAR runtime (MQTT-LRT) gateway colocated with the
MQTT broker and the LAMINAR instance within the VM.
Note that for all deployments tested, we chose to colocate
the message gateway, the MQTT broker, and the ZeroMQ
Laminar service but did not implement any further intra-
machine message optimization.

In our experiments, we name each deployment configuration
to indicate one of three options, separated by hyphens in each
name. The first part of the name indicates which LAMINAR
nodes were assigned to the edge device for that deployment.
The letters “K,” “R,” and “C” indicate that KS, REG, and
CORR, respectively, were hosted on the edge device. All other
nodes are assigned to the VM. The word “none” indicates that
all LAMINAR nodes were assigned to the VM, and the edge
device only generates the input sensor data.

The second part of the name indicates whether the device
used a delay or process sleep function (denoted “nosleep”) or
a deep-sleep function (denoted “sleep”) to wait while idle until
the beginning of a duty cycle. Finally, the third part of each
name indicates whether the runtime was configured to use
persistent storage (denoted “persist”) or in-memory storage
(denoted “memory”). For example, the name “K-nosleep-
persist” refers to a configuration in which KS is assigned to
the edge device, the device actively waits during idle periods
between duty cycles using a delay or process sleep function,
and the runtime uses persistent storage for its logs.

V. RESULTS

We next show how deployment-as-code can be used to
capture the energy consumption required by various deploy-
ments of the anomaly detection application. We consider both
edge devices with and without a firewall. Note that all the
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Fig. 2. Total energy consumed (in Joules) for different LAMINAR deployments
of the anomaly detection application on the Feather.

deployments used two hosts, designated as host 1 and host
2 in the program preamble. Thus, each deployment across
all of the experiments that follow required only that the host
identifier be changed to indicate the node-to-host mapping
for the program nodes. There are no other code differences
between deployments.

Figure 2 shows a comparison, in Joules, of the energy
consumed by the Feather over 15 minutes, for the different
deployment configurations of the application. To generate the
results shown in the figure, we sited the Feather in a local resi-
dence (i.e. a student apartment) serviced by residential Internet
connectivity and isolated by a firewall. For each configuration
(along the x-axis), the figure shows the consumed energy, in
Joules, on the y-axis. In each case, we ran the application for
30 minutes but recorded the energy consumption during the
last 15 minutes to allow for thermal stabilization of the device
and the power supply.

Surprisingly, energy consumption is minimized when KS
is assigned to the Feather rather than when all computational
nodes (i.e., the “none” configurations) are assigned to the VM.
Indeed, even when CORR, KS, and REG are all executed
on the Feather, the energy consumption is lower than when
none of them are. This result indicates that the LAMINAR
implementation using an MQTT-LRT gateway expends more
energy communicating inputs to CORR, KS, and REG than
it does when executing them.

To understand why, consider the graphical dataflow repre-
sentation of the application shown in Figure 1. KS, CORR and
REG each require 5 input values to fire. Because there are no
data dependencies between these nodes, they can execute in
parallel even when the target platform is single-threaded and
not timeshared (as is the case when executing on the Feather).
Thus, before LAMINAR fires each node, it must gather and
deliver the node’s inputs. In the current prototype, nodes store
their outputs in logs collocated with the node’s execution. Thus
in the “none” configurations, LAMINAR fetches the inputs for
KS, CORR, and REG from the edge device to the VM where
they will each be executed. Further, the VM implementation
attempts to execute these nodes in parallel, so LAMINAR
performs these fetches independently. The result is that the
5 sensor values are sent 15 times from the edge to the VM
per duty cycle. Note that ARB takes only a single boolean

value from KS, CORR, and REG. As a result, a configuration
in which one of these anomaly test nodes is assigned to the
edge reduces the energy consumed by the device required to
transport 4 messages across the network and increases the
energy consumption for node execution.

It is also noteworthy that using the deep-sleep functionality
available for the Feather requires more energy than an active
idle waiting implementation. This result is likely due to the
Feather’s design. Specifically, the deep sleep mode for this
device de-energizes all on-board subsystems except a timer.
The result is that the Feather goes through a complete power-
up and restart when awakened from a deep sleep. Note that
power consumption is approximately an order of magnitude
less during deep sleep than during normal operation.

With the runtime configured for persistence, LAMINAR will
resume and continue the application after power-up or restart
so it supports this power-cycle deep sleep mode transparently.
However, from an energy consumption perspective, because
the network interface completely powers down during a deep
sleep, the device must reacquire a wireless connection and
then reestablish an MQTT connection after each deep sleep.
Because the duty cycle is 12 seconds in these experiments,
the deployments that enable deep sleep use more energy (due
to the energy required to reacquire the network and MQTT
connectivity) compared to active waiting.

Finally, but unsurprisingly, the deployment that uses an in-
memory implementation of logs uses less energy than one that
uses persistence. Note that the Feather can support a maximum
of 80KB of program data in memory. As such, there is insuf-
ficient program memory to hold the logs used by LAMINAR
for all but a “none” deployment. Further, LAMINAR cannot
pause and resume application execution using in-memory logs
when power is lost. Thus, using the in-memory configuration
with the deep sleep configuration is impossible. Comparing
“none-nosleep-memory” to “none-nosleep-persistence” shows
that the additional energy needed to store and retrieve data
from persistent storage on the Feather is not substantial over
a 15 minute period.

Note that we report the total energy used rather than the
energy used per unit time to provide insight into the impact
on the battery charging lifecycle. Specifically, the energy used
during battery operation (and not the power) correlates with
discharge time. Because we use the same 5 volt power supply
for all experiments (and the internal voltage used by the
Feather is 3.3 volts) and because the plug logger cannot
measure the voltage of the device internally, we also do
not report amp-hours. In a battery-powered context using a
Feather, the battery would connect the Feather’s onboard 3.3
volt regulator and not the 5 volt mini USB connector, and we
do not have access to the energy dissipation caused either by
the step-down transformer in the USB interface nor the on-
board voltage regulator circuit. However, because we report
energy totals, the differences in energy consumed shown in
Figure 2 are a function of experiment duration.

While predicting battery discharge duration is always chal-
lenging, particularly for outdoor settings where environmental
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Energy consumed over 15 minute period:
RPi3B+ behind a firewall

Fig. 3. Total energy consumed (in Joules) for the LAMINAR anomaly detection
application on the RPi3B+ behind a firewall.

conditions can affect discharge rates, it is possible to compare
theoretically achievable discharge times from the data shown
in Figure 2. Specifically, for a 2000mAh Lithium Poly battery,
the average energy consumption of the “K-nosleep-persist”
configuration (the most energy-efficient of those tested) cor-
responds to a maximum discharge time of approximately 25
hours compared to approximately 16.8 hours for “R-sleep-
persist” (the least energy efficient).

These results illustrate two essential features enabled by
deployment-as-code. The first is that the same application
code paired with different preambles, each specifying a dif-
ferent deployment configuration as node-to-host assignments,
results in a working deployment. Note that the execution of
a preamble results in a set of logs that serve as input to the
application body. Secondly, the choice of deployment for even
a simple application can affect energy efficiency substantially,
and deployment-as-code facilitates the exploration of these
effects through simple node-to-host mappings in the preamble.

A. RPi3B+ as Edge Device

Figure 3 shows the energy consumption for the anomaly-
detection application when executed on a Raspberry Pi 3B+
(RPi3B+). The device is sited in the same location (i.e., in a
residence behind a firewall) as in the previous experiment.

For these results, we used the same deployment setting as
for those depicted in Figure 2. In Figure 3, all deployments
that used the RPi3B+ are prefixed with “pi-”. Note that the
RPi3B+ does not include a deep-sleep mode, and we did
not have a straightforward way to implement a timed power-
off period to emulate the deep-sleep mode of the Feather.
The active delay on the RPi3B+ was implemented using
the Linux sleep system call but the same as the Feather
implementation otherwise. That is, the runtime was single-
threaded, persistent storage did not use virtual memory, and
communication between the edge device and the VM used the
MQTT-LRT gateway and MQTT broker.

The results shown in Figure 3 indicate that because the
RPiB3+ does not implement power or energy management,
all LAMINAR application configurations require essentially the
same amount of energy (the differences, on the scale shown,
are virtually indistinguishable). However, the energy usage, by
comparison, is substantially greater than that of the Feather.
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Fig. 4. Comparison of total energy consumed (in Joules) by the Feather when
connected to two different networks, one behind a firewall (light green) and
the other not (dark green).
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Fig. 5. Comparison of total energy consumed (in Joules) by RPiB3+ using
two different networks, behind a firewall (blue) and not (dark blue).

This observation illustrates how results gathered from one
device architecture do not necessarily translate to another as
a function of deployment configuration. For example, simple
intuition would indicate that a Feather would require less
energy than an RPi3B+. What is less obvious is that the
amount of savings is a function of deployment configuration
for the Feather alone.

B. Effect of Unseen Configurations

Figure 4 compares the energy consumption for the Feather
for LAMINAR configurations behind a firewall (same data as
in Figure 2) to those that employ a different network (without
a firewall, shown in dark green). For the latter experiments,
we connected a a TP-Link Omada EAP-110-Outdoor wireless
access point directly to the campus network. We chose this
access point since it is one we have used extensively in several
outdoor field deployments. The access point was configured
not to provide DHCP or NAT service, so the Feather received
a campus network address from the DHCP server for the
subnetwork to which the access point was connected. Note
that this subnetwork differed from the one hosting the VM
(i.e., all network traffic traversed the campus intranet). The
Feather was the only client attached to the access point during
the experiments. The only difference between the light and
green bars is the wireless network and device location. The
deployment configurations are shown on x-axis.



From the figure, somewhat surprisingly, the energy usage by
the Feather is higher in the campus setting where the access
point and the network were significantly lower latency than
in the home setting with a firewall. Moreover, deep sleep
mode appears to use less energy compared to active waiting,
whereas on the home setting, it used more energy (although
the difference is small). This latter observation is especially
puzzling since reestablishing network connectivity after a deep
sleep requires a response from a campus-level DHCP server
(and not just the local access point, as in the home setting).
In short, access to a lower-latency network, which should
have reduced communication time (and saved energy) required
more energy compared to a slower, less performant network.

We believe that this somewhat counterintuitive result is due
to an 802.11 power-saving configuration that is optionally
supported by different access points. Specifically, the ESP8266
microcontroller can use a modem sleep mode between 802.11
DTIM beacon intervals, which were longer in the home setting
than in the campus setting.

Modem sleep between DTIM intervals is documented, but
the configuration of the access points with which the Feather
was communicating in these experiments was not easily
discoverable. Deployment-as-code, however, allowed us to
discover the most energy-efficient deployments through simple
mapping changes in each preamble.

In Figure 5, we show the effect of 802.11 connectivity on
energy consumption for the RPiB3+. The figure compares the
results for the RPiB3+ (from Figure 3, shown in blue) for the
home setting to those for the campus setting (dark blue) using
the TP-Link access point. Note that we observed no difference
between persistent and in-memory deployment configurations
in either setting, so we show only the results for the persistent
configurations. The only difference in the experimental setup
between the use of the two devices was the location, and
network connectivity.

These results confirm the conventional intuition that a
lower-latency network improves energy usage for the RPi3B+.
Otherwise, the results confirm that for the RPi3B+, the deploy-
ment configuration of this application does not affect energy
consumption significantly. Deployment-as-code enables us to
easily compare a wide range of deployment options with
only minimal changes to the DAC preamble (node to host
assignments) in a network transparent way.

VI. CONCLUSIONS

In this work, we present a new approach to distributed de-
ployment of IoT application components (called “deployment-
as-code”) that leverages the dataflow programming model. Our
extensions include support for microcontrollers, lightweight
log implementations, and decoupling (separate compilation) of
the application preamble from its body. Our evaluation shows
that this approach simplifies deployment experimentation and
facilitates greater understanding of energy efficiency and per-
formance of edge/fog applications.
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